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Empirical	Bayesian	Inference

• Observations	! generated	from	true	
states	of	the	world	"∗ by	true	
generative	process.
• Generative	model	of	! and	some	
hidden/latent	variables	" (think	of	
labels,	object	identities,	position,	
…),	with	parameters	$
• Often	factorized:
%& !, " = %& ! " %&(")	 "∗

!

"



Empirical Bayesian	Inference

• Objective:	
• Maximum	likelihood	fit	of	parameters	$
• Bayesian	inference	on	the	posterior	
%& "|! on	latent	variables	",	given	
observations	!.

• Problem:
• Exact	solution	%& "|! =

./ 0|1 ./ 1

./ 0
often	computationally	intractable.

"∗

!

"



Approximative Inference	Methods

• Point	estimates	(MAP,	MLE):	
Pro:	simple,	fast
Con:	overfitting,	no	confidence	intervalls

• Markov	Chain	Monte	Carlo	(MCMC):
Pro:	asymptotically	unbiased
Con:	often	expensive,	hard	to	assess	convergence

• Variational	Inference:
Pro:	fast	parametric	approximation	of	posterior
Con:	possibly	biased,	representational	power	

limited	by	functional	family	of	approximation "∗

!

"



Variational	Inference
• Introduce	parametric	approximation	234 "5
of	true	posterior	%& "5 !5 (e.g.	diagonal	
Gaussian	where	65 = {85, 95}).
• Minimize	Variational	Free	Energy:

"∗

!

"

; !, $, 6 =<−ln%& !5 + ABC

�

5

234 "5 ||%& "5 !5

=< −ln%& !5|"5 EF4 14
+ ABC

�

5

234 "5 ||%&("5)

G H . I = ∫ G H % H 	dH	

ABC 2 H ||%(H)
= ln 2 H − ln % H E I

“Kullback-Leibler Divergence”,	Properties:
ABC 2 H ||%(H) ≥ 0

ABC 2 H ||%(H) = 0 ⇔ % H = 2 H 	∀	H

Cheap	evaluation.

234 "5 %& "5 !5



Variational	Free	Energy

• Upper	bounds	−ln %& !5 ,	i.e.	minimization	w.r.t.	
$ corresponds	to	maximum	likelihood	extimation
of	parameters.
• Minimizing	w.r.t.	65 tightens	the	bound	by	
minimizing	ABC 234 "5 ||%& "5 !5 ,	i.e.	driving	
variational	densities	234 "5 towards		true	
posterior	%& "5 !5 .

"∗

!

"; !, $, 6 =<−ln%& !5 + ABC

�

5

234 "5 ||%& "5 !5

=< −ln%& !5|"5 EF4 14
+ ABC

�

5

234 "5 ||%&("5) 234 "5 %& "5 !5



Recognition	Network
• Vanilla	variational	inference	optimizes	individual	
parameters	65 for	each	observation	!5.	This	means	
additional,	costly	optimizations	for	each	new	
observation	!5 at	test	time	(i.e.	after	learning).
• Idea:	Use	a	deep	neural	network	to	approximate	
the	complex	functional	dependency	of	variational	
parameters	65 on	observations	!5,	utilizing	the	
flexibility	of	neural	networks.	Add	the	parameters	
of	this	mapping	to	the	set	of	fixed	parameters	$.

234 "5 → 2& "5 !5 = Q("5; 8& !5 , 9& !5 )



Final	VAE	Objective

• Minimize	Variational	Free	Energy

w.r.t.	parameters	$ to	obtain	generative	model	
%& !5|"5 %&("5)	and	very	fast	and	efficient	
approximation	2& "5|!5 of	true	posterior	%& "5|!5 .

; !, $ =<−ln%& !5 + ABC

�

5

2&("5|!5)||%& "5 !5

=< −ln%& !5|"5 E/(14|04) + ABC

�

5

2& "5|!5 ||%&("5)



Optimization	of	VAE	Objective
• Gradient	descent	w.r.t.	$:

Expectation	value	over	2& "5|!5 not	tractable	
à Sampling	based	approximation
à Problem:	Backpropagation	through	samples	

"5
S ∼ 2& "5|!5

U&; !, $ = U&< −ln%& !5|"5 E/ 14|04 + ABC

�

5

2& "5|!5 ||%&("5)

=<U& −ln %& !5|"5 + ln 2& "5|!5 − ln %&("5) E/ 14|04

�

5

= <U& −ln %& !5|"5 E/ 14|04 + U&ABC

�

5

2& "5|!5 ||%&("5)

Closed	form	for	
diagonal	Gaussians

Otherwise



Reparameterization Trick
• Sample	VS, W = 1,… , Z[\]^_`[ from	% V = Q V; 0,1

• "5
S = a&(V

S, !5),	such	that	sc
S ∼ 2& "5|!5

• ; ≈ e

fghijklg
∑ −ln %& !5|"5

S + ln 2& "5
S|!5 − ln %&("5

S)�
5,S

;

"5
S

!5

$

;

!5

$"5
SVS

n;

n"

o1

o&
= op

o&

Original	Form Reparameterized Form

Introduced	in	Kingma and	Welling,	Auto-Encoding	Variational	Bayes,	https://arxiv.org/abs/1312.6114;	Rezende,	Mohamed	and	
Wierstra,	Stochastic	Backpropagation	and	Approximate	Inference	in	Deep	Generative	Models https://arxiv.org/abs/1401.4082

Allows	to	use	
backpropagation	through	
deterministic	function	g



Reparameterization Trick

• Works	on	a	large	range	of	distributions,	e.g.	any	
location-scale	family	(Normal,	Laplace,	Logistic,	…)
• Needs	a	good gradient-based optimizer to work
well (e.g.	ADAM)
• Allows variational	inference by gradient descent on	
deep generative	models.



Relation	to	Autoencoders

• Learned	likelihood	
%& !5|"5 à “Decoder”
• Approximate	posterior	
2& "5|!5 	à “Encoder”

Illustration	modified	from:	D.P.	Kingma,	“Variational	Inference	and	Deep	Learning:	A	New	Synthesis”,	PhD	Thesis,	http://dpkingma.com

%& !5|"52& "5|!5

%& "5

Latent	space "

Observations	!

True	states "∗



• Frey	Faces		&	MNIST

"∗

!

"

Face	Identity	
&	Mood

Pixel	Image

Examples
Number	&	
Handwriting	
Style

Decoding	from	2D-Latent	Space
Figures	from:	Kingma and	Welling,	Auto-Encoding	
Variational	Bayes,	https://arxiv.org/abs/1312.6114



• SVHN	&	Frey	Faces		&	MNIST

"∗

!

"

Face	Identity	
&	Mood

Pixel	Image

Examples
Number	&	
Handwriting	
Style

Imputation	of	Missing	Data	by	Constrained	Sampling	from	Generative	Model

House	
Number

Figure	from:	Rezende,	Mohamed	and	Wierstra,	Stochastic	Backpropagation	and	
Approximate	Inference	in	Deep	Generative	Models https://arxiv.org/abs/1401.4082

Idea:	Project	back	and	forth	between	data	space	
and	latent	space,	while	keeping	the	known	pixels	
fixed.	If	initialized	close	enough	to	true	solution,	
the	samples	for	the	unknown	pixels	will	converge	
to	samples	from	the	constrained	probability	
distribution	%(!qrsrtur|!srtur)



"∗

!

"

Object	
Identity,	
Position,…

Pixel	
Image

Examples

CIFAR-10	using	DRAW CIFAR-10	using	VAE	with	
diagonal	Gaussian	densities	
and	normalizing	flows	
(namely	Inverse	
Autoregressive	Flows)

Images	from:	https://blog.openai.com/generative-models/
Paper:	Kingma et	al.,	Improving	Variational	Inference	with	Inverse	Autoregressive	Flow,	https://arxiv.org/abs/1606.04934,	
Code:	https://github.com/openai/iaf
c.f.	http://www.inference.vc/choice-of-recognition-models-in-vaes-a-regularisation-view/



Models	of	Time-Series

• Training	data:	300h	of	audiobooks	
by	single,	female	speaker

• Samples

!vwe

"vwe

Hidden	state-space model

Raw	audio	waveform	
of	female	speach

"v

!v

"vxe

!vxe

From:	Chung	et	al.,	 Recurrent	Latent	Variable	Model	for	
Sequential	Data,	https://arxiv.org/abs/1506.02216



Models	of	Time-Series

!vwe

"vwe

Hidden	state-space model

X-Y	Position	and	Up/Down	
State	of	Pen	on	Paper

"v

!v

"vxe

!vxe

From:	Chung	et	al.,	 Recurrent	Latent	Variable	Model	for	
Sequential	Data,	https://arxiv.org/abs/1506.02216



Summary:	
Variational	Autoencoder
• Allows	approximate	Bayesian	inference	on	deep	
generative	models	using	gradient	descent.
• In	practice,	diagonal	Gaussian	forms	are	assumed	for	
the	likelihood	%& !5|"5 ,	prior	%& "5 and	variational	
density	2& "5|!5 .
• Using	normalizing	flows	to	nonlinearly	transform	the	
variational	density,	these	restrictions	can	be	
ameliorated	for	2& "5|!5 .
• Learned	generative	models	allow	(constrained)	
sampling	to	generate	full	observations	or	impute	
missing	data.
• The	resulting	approximate	posterior	allows	to	get	
sensible	confidence	bounds	on	inferred	latent	
variables.



Evolution	Strategies

• Decades	old	(Rechenberg &	Eigen,	1973).
• Black-box	optimization	technique	for	non-
differentiable	objective	functions.
• Using	this	optimization	technique,	simple	direct	
policy	search	was	recently	shown	to	yield	
comparable	performance	to	state-of-the	art	
reinforcement	learning	algorithms	in	MuJoCo
Control	Tasks	and	Atari-Games



Setup

Objective:
• Minimize	objective	function	; $
w.r.t.	parameters	$

Problem:

• Partial	derivatives oy &

o&
are	not	accessible



Idea
Instead	of	looking	for	a	single,	optimal	parameter	vector	$,	introduce	population	density	on	
parameters	%z $ = Q($; 8z, 9z) with	sufficient	statistics	{ = {8z, 9z} and	optimize	the	
expectation	value

| { = ; $ .}(&)

w.r.t.	{.

It	is	easy	to	show	that	the	gradients	w.r.t.	the	sufficient	statistics	{ of	the	population	density	are

Uz| { = ; $ U ln %z($) .}(&)

By	(again)	using	a	diagonal	Gaussian	for	%z($),	i.e.	{ = {8z; 9z},	one	can	now	estimate	the	
gradients	w.r.t.	the	means	8z as	

U~}| { = ; $
1

9z � ($ − 8
z)

.}(&)

And	w.r.t the	standard-deviations	9z as

UÄ}| { = ; $
$ − 8z

�
− 9z

�

9z Å
.}(&)

“Smoothed	finite-
differences	approximation”



Sampling	based	approximation
These	gradients	can	easily	be	approximated	using	samples	from	the	population	
density	to	approximate	the	expectation	value.

Using	Z[\]^_`[ samples	$5 ∼ %z $ :

U~}| { ≈
1

Z[\]^_`[
< ; $5

1

9z � ($5 − 8
z)

fghijklg

5Çe

UÄ}| { ≈
1

Z[\]^_`[
< ; $5

$5 − 8
z �

− 9z
�

9z Å

fghijklg

5Çe

The	sampling	can	trivially	and	very	efficiently	be	parallelized,	as	only	the	
parameter	samples	$5 and	the	resulting	values	; $5 have	to	be	communicated	
between	the	main	process	and	the	compute	processes.



Intuition

Illustration	from:	https://blog.openai.com/evolution-strategies/

8e
z

8�
z

| 8e
z, 8�

z ,			for	fixed	values	of 9e
z, 9�

z.



Intuition
Images	from:	http://www.inference.vc/evolution-strategies-variational-optimisation-and-natural-es-2/

; $

|(8z, 9z)

; $

$

$

9z

8z

8z

9z



Caveats

Images	from:	http://www.inference.vc/evolution-strategies-variational-optimisation-and-natural-es-2/

; $

$

|(8z, 9z)

9z

8z

|(8z)

8z

for	fixed	value	of	
9z = 0.1

Always	optimize	means	
and	standard	deviations!	
Fixed	values	for	the	
standard	deviation	might	
lead	to	spurious	minima.



Examples

Images	from:	https://blog.openai.com/evolution-strategies/
Paper:	Salimans et	al.,	Evolution	Strategies	as	a	Scalable	Alternative	to	Reinforcement	Learning,	https://arxiv.org/abs/1703.03864,	
Code:	https://github.com/openai/evolution-strategies-starter

; $ à Distance	Walked
$à Parameters	of control policy



Examples

; $ à Score
$à Parameters	of control policy

Illustration	from:	https://blog.openai.com/evolution-strategies/
Table	from:	Salimans et	al.,	Evolution	Strategies	as	a	Scalable	
Alternative	to	Reinforcement	Learning,	
https://arxiv.org/abs/1703.03864,	
Code:	https://github.com/openai/evolution-strategies-starter



Summary:	
Evolution	Strategies
• Black-box	optimizer	for	non-differentiable	objective	
functions	(e.g.	the	reward	as	function	of	the	parameters	of	a	
policy)
• No	need	for	backpropagation,	i.e.	explicit	partial	derivatives	
w.r.t.	parameters.
• Parallelizes	extremely	well
• Allows	exploration	of	new	policies	directly	on	parameter	
space.	à No	need	to	artificially	force	random	exploration	
within	individual	policies.	àWorks	also	for	fully	
deterministic	policies.
• Can	handle	credit	assignment	over	long	timescales,	as	full	
games/episodes	are	evaluated	to	compute	gradient	
estimates.	àWorks	well	in	environments	with	long	time	
horizons	and/or	sparse	rewards.



Active	Inference

• Normative	theory	of	brain	function
• Motivated	by	a	homeostatic	argument:
• To	survive	in	a	changing,	noisy	environment,	
a	system	has	to	keep	certain	vital	
parameters	within	strict	bounds	(think	of	
body	temperature,	pH,	O2,	K+,	Na+,	…).
• To	do	this,	it	has	to	keep	the	entropy	of	its	
distribution	on	state	space	low,	otherwise	
diffusive	processes	would	at	a	certain	point	
push	one	of	these	variables	out	of	the	viable	
range,	leading	to	a	phase	transition	(death).

"∗

!

"



Active	Inference

• The	entropy	of	the	true	states	"∗ can	be	
bounded	by	the	entropy	of	the	sensory	
states	!,	given	the	sensory	system	has	a	
sufficient	mapping	from	vitally	important	
states	to	sensory	inputs	(globus
caroticus,	hypothalamus,	macula	densa,	
…).

É "∗ ≤ É ! + Ö

"∗

!

"



Active	Inference

• The	entropy	of	the	sensory	states	can	be	
expressed,	assuming	ergodicity,	as:

É ! = Ü− ln % ! % ! d!
�

�

=
1

á
Ü− ln % ! dà
�

�

à Can	be	minimized	by	an	agent	by	
minimizing	the	time	integral	over	surprise	
− ln % ! or	by	minimizing	surprise	at	every	
instant	(c.f.	Euler-Lagrange	formalism)

"∗

!

"



Active	Inference

• Surprise	directly	is	not	accessible	to	the	
agent.
• However,	if	the	agent	possesses	a	
generative	model	of	its	environment	
%& !, " = %& ! " %&(")	it	could	
calculate	surprise	by	marginalizing	over	
hidden	states	à Computationally	
infeasible!

"∗

!

"



Active	Inference
• However,	an	agent	could	use	a	variational	
approximation	to	upper-bound	surprise

• The	sufficient	statistics	65 ,	representing	the	approximate	posterior	over	hidden	variables,	
given	observations,	change	on	a	fast	timescale	
and	could	be	represented	using	neural	activity.
• The	parameters	$	of	the	generative	model	
change	slowly	with	the	accumulation	of	new	
observations,	and	could	be	represented	in	terms	
of	synaptic	connectivity.

"∗

!

"

; !, $, 6 =<−ln%& !5 + ABC

�

5

234 "5 ||%& "5 !5

=< −ln%& !5|"5 EF4 14
+ ABC

�

5

234 "5 ||%&("5)



Active	Inference
• In	contrast	to	a	Variational	Autoencoder,	an	
agent	can	also	act	on	the	world,	via	active	states	
â,	describing	the	states	of	its	muscles,	motors,	
actuators,	…	
• The	agent‘s	observations	! are	now	a	– complex	
– function	of	the	agents	active	states	!(â)
• Now	the	agent	can	change	the	states	â of	its	
actuators	to	minimize	a	Free	Energy	bound	on	
surprise	(“Action”),	which	is	made	tight	by	
optimizing	the	sufficient	statistics	65 of	the	
variational	density	234 "5 (“Perception”)	and	
the	parameters	$ of	its	generative	model	
%& !, " = %& ! " %&(") (“Learning”)
• Hypothesis:	The	dynamics	of	neural	activity,	
synaptic	plasticity	and	motor	activity	are	given	
by:

"∗

!

"

â, $, 6 = argmin
(è∗,&∗,3∗)

	; !(â∗), $, 6



Active	Inference

• Con:
• Very	abstract.
• Uses	a	loooong list	of	non-trivial	assumptions.
• No	hard	evidence	so	far.
• Literature	up	to	now	has	not	shown	that	this	functional	can	actually	
lead	to	intelligent	behavior	and	learning	in	situations	where	the	agent	
does	now	know	a	lot	about	its	environment.

• Pro:
• Integrated	account	of	action,	perception,	behavior.
• Derived	from	homeostatic	(i.e.	evolutionary)	functional.
• Explains	– on	an	abstract	level	– basic	features	of	neuroanatomy,	
electrophysiology,	behavior.

• Some	preliminary	evidence	by	behavioral	and	functional	MRI	
experiments	(far	away	from	cell-physiology).

• To	Dos:
• Design	experiments	and	test	concrete	models	against	data.
• Demonstrate	that	Active	Inference	allows	an	agent	to	reach	concrete	
goals	in	a	not-entirely-trivial	environment.

First	steps
ahead	now.



Deep	Active	Inference

• Implementation	of	Active	Inference	using	methods	
form	deep	learning	(mostly	VAE	and	ES).
• Should	scale	well	to	larger	environments.
• Up	to	now	only	example:	Mountain	car	world.



Mountain	Car	Problem
• Agent	is	a	small	
car	on	a	hilly	
landscape	
• It	starts	at	the	
bottom	of	the	
valley	at	H = −0.5

• Wants	to	reach	
position	H = 1.0



Mountain	Car	Problem
• Problem:	
Due	to	limited	power	output,	
;]\ë
]títì = 0.03,	its	motor	can	

not	overcome	the	steep	part	
of	the	slope	at	H = 0 directly.

Downhill	
force



Montain Car	Problem

• True	state	"∗ = (âv, Hv, ïv)
• Initial	state	 âñ, Hñ, ïñ = (0,−0.5,0)
• Discreet	time	dynamics:

;p H = −
nó H

nH
;è â = 0.03 tanh â
;ö ï = −0.25ï

ïvxe = ïv + ;p Hv + ;è âvxe + ;ö ïv
Hvxe = Hv + ïvxe

• Shorthand:
Hvxe, ïvxe = ú(Hv, ïv, âvxe)

Gravity

Motor	Output
Friction



Architecture	of	the	Agent

"vwe "v "vxe

!vwe !v !vxeâv âvxe

"vwe
∗ "v

∗ "vxe
∗

Dynamics	of	
the	real	car.

Motor	force

Latent	variables:	Hidden	states	in	
the	agent’s	generative	model

Sensory	states Active	states

True	states	of	
the	world



Architecture	of	the	Agent
Sensory	system:

Noisy	sense	of	position
%(!I,v|Hv) = Q(!I,v; Hv; 0.01)

Irrelevant	sensory	channel

!ù,v = exp −
Hv − 1.0

�

2 ° 0.3�

Proprioceptive	sensory	channel
!è,v = âv

"vwe "v "vxe

!vwe !v !vxeâv âvxe

"vwe
∗ "v

∗ "vxe
∗

Note:	No	direct	sense	of	velocity	or	momentum!



Agent’s	Generative	Model
Priors:
% "vxe "v 	

= Q("vxe|8&
v "v , 9&

v "v )

where	"ñ = (0,… , 0)

and	dim " = 10

"vwe "v "vxe

!vwe !v !vxeâv âvxe

"vwe
∗ "v

∗ "vxe
∗

Implemented	using	a	fully	connected	network	
with	tanh-nonlinearity	for	the	means	and	
softplus nonlinearity	for	the	standard-
deviations.



Agent’s	Generative	Model
Likelihoods:

Noisy	sense	of	position
%(!I,v|"v) = Q(!I,v; 8&

0¢ "v , 9&
0¢("v))

Irrelevant	sensory	channel
%(!ù,v|"v) = Q(!ù,v; 8&

0£ "v , 9&
0£("v))

Proprioceptive	sensory	channel
%(!è,v|"v) = Q(!è,v; 8&

0§ "v , 9&
0§("v))

"vwe "v "vxe

!vwe !v !vxeâv âvxe

"vwe
∗ "v

∗ "vxe
∗

Implemented	by	deep	feed-forward	network	with	3	
hidden	tanh-layers	and	10	hidden	units	per	layer.	
Means	are	calculated	from	last	hidden	layer	by	a	
linear	layer,	standard-deviations	by	a	softplus layer.



Recognition	density
Analogous	to	Variational	
Autoencoder:
Instead	of	optimizing	sufficient	
statistics	6v of	23• "v at	every	
time	step,	use	fixed	
approximation	by	neural	
networks:

"vwe "v "vxe

!vwe !v !vxeâv âvxe

"vwe
∗ "v

∗ "vxe
∗

Implemented	by	deep	feed-forward	network	with	2	hidden	tanh-layers	and	10	
hidden	units	per	layer.	
Means	are	calculated	from	last	hidden	layer	by	a	linear	layer,	standard-deviations	by	
a	softplus layer.

2& "v "vwe, !I,v, !ù,v, !è,v =
Q("v; 8&

E "vwe, !I,v, !ù,v, !è,v , 9&
E "vwe, !I,v, !ù,v, !è,v )



Action
Analogous	to	Recognition	Density:
Instead	of	optimizing	sufficient	
statistics	of	action	states	at	every	
time	step,	use	fixed	
approximation	by	neural	
networks:

"vwe "v "vxe

!vwe !v !vxeâv âvxe

"vwe
∗ "v

∗ "vxe
∗

Implemented	by	deep	feed-forward	network	with	1 hidden	tanh-layer	(10	hidden	
units).
Means	are	calculated	from	last	hidden	layer	by	a	linear	layer,	standard-deviations	by	
a	softplus layer.

%& âvxe "v = Q(âvxe; 8&
è "v , 9&

è "v )



Objective	Function	– Variational	Free	Energy

; !, $ = ∑ [ß
vÇe

< −ln %&(!I,v|"v)	−ln %&(!ù,v|"v)−ln %& !è,v "v >E/(1•|1•™´,0¢,•,0£,•,0§,•)

+A¨≠ 2& "v "vwe, !I,v, !ù,v, !è,v ||%& "v "vwe
]	

• We	use	the	closed	form	of	A¨≠ for	diagonal	Gaussians
• To	evaluate	this	function,	we	can	propagate	individual	processes,	
with	*a	single	sample* per	density.



Evaluation

"vwe "v "vxe

!vwe !v !vxeâv âvxe

"vwe
∗ "v

∗ "vxe
∗

; !, $ = ∑ [ß
vÇe

< −ln %&(!I,v|"v)	−ln %&(!ù,v|"v)−ln %& !è,v "v >E/(1•|1•™´,0¢,•,0£,•,0§,•)

+A¨≠ 2& "v "vwe, !I,v, !ù,v, !è,v ||%& "v "vwe
]



Optimization
Problem:
We	can	not	directly	calculate	gradients	w.r.t.	the	parameters	of	the	
action	function,	as	we	would	have	to	backpropagate through	the	
unknown	dynamics	of	the	environment.

Solution:	That’s	why	we	talked	about	Evolution	Strategies	before!

"vwe "v "vxe

!vwe !v !vxeâv âvxe

"vwe
∗ "v

∗ "vxe
∗

Agent	does	not	know	
true	environmental	
dynamics	or	their	partial	
derivatives	w.r.t.	action.



How	to	set	Goals?
Problem:
If	we	propagate	the	agent	as	is,	it	will	find	a	comfortable	stable	state	
(likely	its	starting	position)	and	settle	there.

Solution:
Instill	homeostatic	“drive”	in	terms	of	very	concrete	prior	about	the	
agents	position	at	the	end	of	a	simulation	run.
First,	represent	the	relevant	quantity	explicitly	in	terms	of	a	hidden	
variable:

2& "Ø,v "vwe, !I,v, !ù,v, !è,v = Q "Ø,v; 0.1oë,í, 0.001 	

Second,	define	very	explicit	expectations	of	”where	to	be”	at	the	
end	of	an	episode	(30	time	steps):

%& "Ø,v "vwe = Q "Ø,v; 0.1,0.001 , t > 20



Nitty	gritty

• Using	ADAM	with	standard	parameters.
• Using	10000	samples	from	the	population	density.
• Using	only	one	process	per	parameter-sample	to.	
approximate	variational	free	energy.
• Using	desktop	computer	with	NVIDIA	Titan	(2013)	
one	optimization	step	takes	about	0.4s,	taking	up	
about	300	MB	of	GPU	memory.



Results	- Convergence

What	happens	here?



Results
Agent	learns	to	first	move	in	opposite	direction!



Results	– After	convergence



Results	– Sampling	
from	Generative	Model

"vwe "v "vxe

!vwe !v !vxe

• No	interaction	with	
the	environment!

• Only	one	sample	
per	density	per	
process.



Results	- Comparison



Constrained	
Sampling

Remember	the	Imputation	of	Missing	Data	using	Generative	Models	(c.f.	VAE,	Faces,	Numbers)	

Sampling	constrained	on	
average	action time	course,	
shifted	10	steps	back	in	time.



Take	home	messages

• An	agent	optimizing	the	Active	Inference	objective	can	reach	a	
not	– entirely	– trivial	goal	while	concurrently	learning	a	
generative	model	of	its	sensations.

• Constrained	sampling	might	help	to	learn	more	about	the	agent’s	
beliefs	about	the	world	and	possible	cognitive	”biases”	that	might	
lead	to	impaired	performance	or	wrong	decisions,	without	the	
need	for	an	external	simulator.

• By	learning	a	full	generative	model,	which	also	includes	latent	
representations	to	predict	initially	irrelevant	sensory	channels,	
the	agent	should	be	able	to	generalize	well	to	new	goals	in	terms	
of	changes	in	its	prior	expectations	on	its	latent	variables.

• Write-up	here:	
https://arxiv.org/abs/1709.02341

• Full Code	here:	https://github.com/kaiu85/deepAI_paper



Next	steps
• Show	comparable	performance	to	state	of	the	art	in	
complex	environments:

• Fit	more	realistic	implementation	of	Active	Inference	to	
actual	behavioral	and	neurophysiological	data.

Images	from:	https://blog.openai.com/evolution-strategies/



Literature	– Variational	Autoencoder
• Monograph

• D.P.	Kingma,	“Variational	Inference	and	Deep	Learning:	A	New	Synthesis”,	PhD	Thesis,	http://dpkingma.com

• Papers
• Basics:	

• Kingma and	Welling,	Auto-Encoding	Variational	Bayes,	https://arxiv.org/abs/1312.6114
• Rezende,	Mohamed	and	Wierstra,	Stochastic	Backpropagation	and	Approximate	Inference	in	Deep	Generative	Models 

https://arxiv.org/abs/1401.4082
• Semi-Supervised	Learning:

• Kingma,	Rezende,	Mohamed	and	Welling,	Semi-Supervised	Learning	with	Deep	Generative	Models,	https://arxiv.org/abs/1406.5298,
Code:	https://github.com/dpkingma/nips14-ssl

• Time-Series	Model:
• Chung	et	al.,	 Recurrent	Latent	Variable	Model	for	Sequential	Data,	https://arxiv.org/abs/1506.02216,	

Code:	https://github.com/jych/nips2015_vrnn,	Samples:	https://github.com/kastnerkyle/vrnn-samples
• Normalizing	Flows:

• Rezende and	Mohamed,	Variational	Inference	with	Normalizing	Flows,	https://arxiv.org/abs/1505.05770
• Tomczak and	Welling	,	Improving	Variational	Auto-Encoders	using	Householder	Flow,	https://arxiv.org/abs/1611.09630,	

Code:	https://github.com/jmtomczak/vae_householder_flow
• Kingma et	al.,	Improving	Variational	Inference	with	Inverse	Autoregressive	Flow,	https://arxiv.org/abs/1606.04934,	

Code:	https://github.com/openai/iaf

• ADAM	Optimizer:
• Ba	&	Kingma,	Adam:	A	Method	for	Stochastic	Optimization,	https://arxiv.org/abs/1412.6980

• Blog	Post
• F.	Huszár,	Choice	of	Recognition	Models	in	VAEs:	a	regularisation view,	http://www.inference.vc/choice-of-recognition-

models-in-vaes-a-regularisation-view/

• Other	implementations:	
• PyTorch Example:	https://github.com/pytorch/examples/tree/master/vae



Literature	– Evolution	Strategies

• Paper:	
• Salimans et	al.,	Evolution	Strategies	as	a	Scalable	Alternative	
to	Reinforcement	Learning,	https://arxiv.org/abs/1703.03864,	
Code:	https://github.com/openai/evolution-strategies-starter

• Blog-Posts
• OpenAI:	https://blog.openai.com/evolution-strategies/
• F.	Huszar:

• http://www.inference.vc/evolutionary-strategies-embarrassingly-parallelizable-optimization/
• http://www.inference.vc/evolution-strategies-variational-optimisation-and-natural-es-2/

• Other	implementations
• Very	didactic	implementation	by	A.	Karpathy:	
https://gist.github.com/karpathyà nes.py



Literature	– Active	Inference
• Papers:

• Outline	of	the	theory:
• Friston,	Daunizeau,	Kilner and	Kiebel,	Action	and	behavior:	a	free-energy	formulation,	

2012,	Biological	Cybernetics,	Vol.	102(3),	227-260
• Friston,	The	free-energy	principle:	a	rough	guide	to	the	brain?,	2009,	Trends	in	

Cognitive	Sciences,	Vol.	13(7),	293-301
• Friston,	The	free-energy	principle:	a	unified	brain	theory?,	Nature	Reviews	

Neuroscience,	2010,	Vol.	11,	127-138
• Some	behavioral	evidence:

• Schwartenbeck,	FitzGerald,	Mathys,	Dolan,	Kronbichler and	Friston,	Evidence	for	
surprise	minimization	over	value	maximization	in	choice	behavior,	2015,	Scientific	
Reports,	Vol.	5

• Most	recent	formulation	with	review	of	neurobiological	evidence:
• Friston,	FitzGerald,	Rigoli,	Schwartenbeck and	Pezzulo,	Active	Inference:	A	Process	

Theory,	Neural	Computation,	2017,	Vol.	29(1),	1-19

• Karl	Friston’s Homepage:	http://www.fil.ion.ucl.ac.uk/~karl/
• Video	Lecture:

• http://videolectures.net/cyberstat2012_friston_free_energy/




