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Empirical Bayesian Inference

e Observations o generated from true s
states of the world s by true
generative process.

* Generative model of 0 and some v
hidden/latent variables s (think of 0
labels, object identities, position, A

...), with parameters 6

e Often factorized: :
py(0,5) = pg(0]s)pgy(s) 5*



Empirical Bayesian Inference

* Objective:
 Maximum likelihood fit of parameters 6

* Bayesian inference on the posterior
pe (s|o) on latent variables s, given
observations o.

 Problem:
po(0]s)pe(s)

_ . pg(0)
often computationally intractable.

* Exact solution pg(s|o) =




Approximative Inference Methods

* Point estimates (MAP, MLE): s

Pro: simple, fast
Con: overfitting, no confidence intervalls

* Markov Chain Monte Carlo (MCMC):

Pro: asymptotically unbiased
Con: often expensive, hard to assess convergence

 Variational Inference:
Pro: fast parametric approximation of posterior

Con: possibly biased, representational power
limited by functional family of approximation



Variational Inference

* Introduce parametric approximation q(pi(si)

of true posterior py(s;|0;) (e.g. diagonal s
Gaussian where ¢; = {u;, g;}). 'f
* Minimize Variational Free Energy: qp,(51) L [petsiled
\
A 4
F(0,0,6) = ) —Inpg (o) + D, (a9, (50 lIpo (sil0D) (o
i A

B z]<_ Inpg (0il51))qy, s + Dxu CHAHIIZIED),

Cheap evaluation.

(f )y = J fOp(x) dx s*

DKL (q (x) | |p(x)) “Kullback-Leibler Divergence”, Properties:
= (Ing(x) — Inp(xX)) g Dy (q(®)|Ip(x)) = 0

Dx1.(q()]|p(x)) = 0 © p(x) = q(x) Vx



Variational Free Energy

F(0,0,¢) = 2 ~Inpg (0,) + Dct, (4, (s 1p6 Cs:10) ) S
[ If

- Z(—ln Po (0il5:))qy (s + Dru (g6, (sDIPa(s)) a0, (\ po (silo)

i \

N Y

* Upper bounds —Inpg (0;), i.e. minimization w.r.t. .

6 corresponds to maximum likelihood extimation
of parameters.

A

* Minimizing w.r.t. ¢; tightens the bound by

minimizing Dy, (qui(si)”pg (s;]o;) ), i.e. driving s*
variational densities g (s;) towards true
posterior py (s;]0;).



Recognition Network

 Vanilla variational inference optimizes individual
parameters ¢; for each observation o0;. This means
additional, costly optimizations for each new
observation o; at test time (i.e. after learning).

* |dea: Use a deep neural network to approximate
the complex functional dependency of variational
parameters ¢; on observations o0;, utilizing the
flexibility of neural networks. Add the parameters
of this mapping to the set of fixed parameters 6.

Q¢i(5i) - qg(silo;) = N(s;; ug(0;),09(0;))



Final VAE Objective

* Minimize Variational Free Energy
F(o,0) = Z —Inpy (0;) + Dgy, (CIG(Si|0i)||P9 (5i|0i))
i

- Z(—ln Peo (Oilsi»CIe(SiIOi) + Dy, (qo (silo)||pe(si))

w.r.t. parameters 6 to obtain generative model
po(0;15;)pe(s;) and very fast and efficient
approximation gy (s;|o;) of true posterior pg (s;]0;).



Optimization of VAE Objective

 Gradient descent w.r.t. O:
VoF(0,0) = Vy Z(—ln Po (0il5i1 ) qys:109) T Pxrr Qo (silo)]|pe (si))

Z ‘_ln Po (0; |51)> silo) +‘V9DKL (qo(silo)Ipa(si)) ‘

Closed form for
diagonal Gaussians

2 (oy~Inpe (0ilsi) +1Inqe(silo)) —In Pe(Sl)' ilog)

Expectation value over gy (s;|0;) not tractable
- Sampling based approximation

Otherwise

— Problem: Backpropagation through samples
Si] ~ qp(silo;)



Re

* Samp

narameterization Trick

eel,j=1, ..., Nsamples from p(€) = N(¢;0,1)

» 5] = gg(€’,0;), such thats! ~ g4(s;|0;)
1 . . .
*F = %i;—Inpg (0;]s]) +1Ingqe(s/lo;) —Inpy(s/)
samples
Original Form Reparameterized Form

X
B
&

Allows to use
backpropagation through
deterministic function g

Introduced in Kingma and Welling, Auto-Encoding Variational Bayes, https://arxiv.org/abs/1312.6114; Rezende, Mohamed and
Wierstra, Stochastic Backpropagation and Approximate Inference in Deep Generative Models https://arxiv.org/abs/1401.4082




Reparameterization Trick

* Works on a large range of distributions, e.g. any
location-scale family (Normal, Laplace, Logistic, ...)

* Needs a good gradient-based optimizer to work
well (e.g. ADAM)

* Allows variational inference by gradient descent on
deep generative models.



Relation to Autoencoders

Prior distribution: pg (sp)

* Learned likelihood
pg (0;|s;) = “Decoder”

* Approximate posterior Latent space s
qo(s;|o;) 2 “Encoder” NG

Encoder: qg(s;|0;) Decoder: pg(0;]s;)
A

o
.
o
.

Observations o

True states s

lllustration modified from: D.P. Kingma, “Variational Inference and Deep Learning: A New Synthesis”, PhD Thesis, http://dpkingma.com
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Figures from: Kingma and Welling, Auto-Encoding
Variational Bayes, https://arxiv.org/abs/1312.6114

(b) Learned MNIST manifold

Decoding from 2D-Latent Space

(a) Learned Frey Face manifold



Figure from: Rezende, Mohamed and Wierstra, Stochastic Backpropagation and

E Xa m p | e S Approximate Inference in Deep Generative Models https://arxiv.org/abs/1401.4082

House Face Identity Number &

* SVHN & Frey Faces & MNIST Number & Mood IS'lawariting
— E tyle
' BBREREBEBRIEBEBEEE

878876878 87697687687 BRTBAFB478478
it

>R e/ s e e e/l e/ e/ e

™ . ™ ) LY

ol
el Il A

Pixel Image

RS :
B
)

%

S| i
SO P [Ny
N (| [«F (O pd] | (S

8 || [ (O] | >
I (| [T O[] [N [

=3 |
P

tN Cr i
LA & g
- = e
: ; i
A = E .
r'.'f'l | - vam KA
¢ . . .

Idea: Project back and forth between data space
and latent space, while keeping the known pixels
fixed. If initialized close enough to true solution,
the samples for the unknown pixels will converge
to samples from the constrained probability

distribution p(Ounknown |9known)
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Imputation of Missing Data by Constrained Sampling from Generative Model




Examples

Object
Identity,
Position,...

Pixel
Image

CIFAR-10 using DRAW CIFAR-10 using VAE with
diagonal Gaussian densities
and normalizing flows
(namely Inverse
Autoregressive Flows)

Images from: https://blog.openai.com/generative-models/

Paper: Kingma et al., Improving Variational Inference with Inverse Autoregressive Flow, https://arxiv.org/abs/1606.04934,
Code: https://github.com/openai/iaf

c.f. http://www.inference.vc/choice-of-recognition-models-in-vaes-a-regularisation-view/
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() Ground Truth

(b) RNN-GMM

(c) VRNN-Gauss

From: Chung et al., Recurrent Latent Variable Model for
Sequential Data, https://arxiv.org/abs/1506.02216

Hidden state-space model

St—1 St St+1

e e

Raw audio waveform
of female speach

* Training data: 300h of audiobooks
by single, female speaker

e Samples



From: Chung et al., Recurrent Latent Variable Model for
Sequential Data, https://arxiv.org/abs/1506.02216

Models of Time-Series

it it :76%‘/ /)7x4/uwn 7
L ooy opored o
-0 \\(\L O\Odoi : \/O\A ¢

Co lov
. l/{rum[“"" how
ns Ju.}l 7

W
s dhowd ohe asseme WA

0.1 Habwds o? censivehon
(a) Ground Truth

‘\(M-Hc o hoa, €N 0 iy
o Ainll He e %@b*ﬂ
e tefoel < VA oy
W sceold 1/7‘1447,%%
el /e Vb/d&b/dl 52,

o oborlirlal . lotohe
(c) RNN-GMM

f‘fujg T (BT lawn ol

e, e a1 3O b et obe:

<V05(/>k \Hee ohue COS. RS
6‘\({' \U Gd\ ‘;cb,“ RGNS ma ﬂ'\L"

shpudy U pgel-ioRin

% o oldr V\UO CYg 1/l
(b) RNN-Gauss

asali ndotigld Hnane
b 4ed P pt Yoo b= 4 oos g
4%W/’)’5,7///7/~ oy /
[cL«K«.?'( N clapabe fere kv & e a
p behyweac_% Vgorel; R+ 10
w ot Ml
(d) VRNN-GMM

Hidden state-space model

o

X-Y Position and Up/Down

State of Pen on Paper




Summary:
Variational Autoencoder

* Allows approximate Bayesian inference on deep
generative models using gradient descent.

* |n practice, diagonal Gaussian forms are assumed for
the likelihood pg (0;|s;) , prior pg(s;) and variational
density gg (si|0ig) .

* Using normalizing flows to nonlinearly transform the
variational density, these restrictions can be
ameliorated for g4 (s;|0;)

* Learned generative models allow (constrained)
sampling to generate full observations or impute
missing data.

* The resulting approximate posterior allows to get
sensible confidence bounds on inferred latent
variables.



Evolution Strategies

* Decades old (Rechenberg & Eigen, 1973).

* Black-box optimization technique for non-
differentiable objective functions.

* Using this optimization technique, simple direct
policy search was recently shown to yield
comparable performance to state-of-the art
reinforcement learning algorithms in MuloCo
Control Tasks and Atari-Games



Setup

Objective:

* Minimize objective function F(60)
w.r.t. parameters 0

Problem:

O0F(0)

5 are not accessible

e Partial derivatives



ldea

Instead of looking for a single, optimal parameter vector 6, introduce population density on
parameters p,,(60) = N(0; u¥, a¥) with sufficient statistics i = {u¥, 6%} and optimize the
expectation value

W) = (F()p, o)
w.r.t. .
It is easy to show that the gradients w.r.t. the sufficient statistics 1 of the population density are

7yn(@) = (F(6)V In P¢(9)>pw(9)

By (again) using a diagonal Gaussian for p,,(0), i.e. Y = {u¥; ¥}, one can now estimate the

gradients w.r.t. the means u¥ as

“Smoothed finite-
differences approximation”

1
7,m ) =|(FO) 5 (0 = )

Py (6)

And w.r.t the standard-deviations o¥ as

(0=u")" = (¥)’
7,un () = <F(9> .

>’P¢(9)



Sampling based approximation

These gradients can easily be approximated using samples from the population
density to approximate the expectation value.

Using Ngamples Samples 6; ~ p, (0):

Nsamples

1 1
) x ——— ' F@©) 0; — ¥
wtl Y Nsamples = l (0'1'0)2( l )
1 Nsamples (Hl . ‘ulp)Z _ (Glp)z
o ~—— S
? Nsamples = l (0_1/))3

The sampling can trivially and very efficiently be parallelized, as only the
parameter samples 6; and the resulting values F(6;) have to be communicated
between the main process and the compute processes.



Intuition

n (,ullp ,u;p), for fixed values of o, a;p.

iteration 1, reward -0.13 iteration 2, reward 0.15 iteration 3, reward 0.31 iteration 4, reward 0.40

lllustration from: https://blog.openai.com/evolution-strategies/




Images from: http://www.inference.vc/evolution-strategies-variational-optimisation-and-natural-es-2/

Intuition
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Caveats

nw?¥,a¥)

F(0)-
—
6
Always optimize means 00
and standard deviations!
. <

Fixed values for the 05
standard deviation might n(u?)

lead to spurious minima.  for fixed value of -°

o¥ =0.1

-2.0
-6 -4 -2 0 2 4 6

Images from: http://www.inference.vc/evolution-strategies-variational-optimisation-and-natural-es-2/ K




8-> Parameters of control policy

F(0) - Distance Walked

Examples

Walker

Hopper

HalfCheetah
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Images from: https://blog.openai.com/evolution-strategies/

Paper: Salimans et al., Evolution Strategies as a Scalable Alternative to Reinforcement Learning, https://arxiv.org/abs/1703.03864,

Code: https://github.com/openai/evolution-strategies-starter




Examples

8-> Parameters of control policy
F(8) = Score

gty :u»m«;,;m{ i35
SR e o ll » >

Illustration from: https://blog.openai.com/evolution-strategies/
Table from: Salimans et al., Evolution Strategies as a Scalable
Alternative to Reinforcement Learning,
https://arxiv.org/abs/1703.03864,

Code: https://github.com/openai/evolution-strategies-starter

Game DQN A3CFF 1day HyperNEAT ES FF, 1 hour A2CFF
Amidar 1334 283.9 184.4 112.0 548.2
Assault 33323 3746.1 912.6 1673.9 2026.6
Asterix 124.5 6723.0 2340.0 1440.0 3779.7
Asteroids 697.1 3009.4 1694.0 1562.0 1733.4
Atlantis 76108.0 772392.0 61260.0 1267410.0 2872644.8
Bank Heist 176.3 946.0 214.0 225.0 724.1
Battle Zone 17560.0 11340.0 36200.0 16600.0 8406.2
Beam Rider 8672.4 13235.9 1412.8 744.0 4438.9
Berzerk 1433.4 1394.0 686.0 720.6
Bowling 41.2 36.2 135.8 30.0 28.9
Boxing 25.8 337 16.4 49.8 95.8
Breakout 303.9 551.6 2.8 9.5 368.5
Centipede 3773.1 3306.5 25275.2 7783.9 2773.3
Chopper Command 3046.0 4669.0 3960.0 3710.0 1700.0
Crazy Climber 50992.0 101624.0 0.0 26430.0  100034.4
Demon Attack 12835.2 84997.5 14620.0 1166.5 23657.7
Double Dunk 21.6 0.1 2.0 0.2 3.2
Enduro 475.6 82.2 93.6 95.0 0.0
Fishing Derby 2.3 13.6 49.8 49.0 33.9
Freeway 25.8 0.1 29.0 31.0 0.0
Frostbite 157.4 180.1 2260.0 370.0 266.6
Gopher 2731.8 8442.8 364.0 582.0 6266.2
Gravitar 216.5 269.5 370.0 805.0 256.2
Ice Hockey 3.8 4.7 10.6 4.1 49
Kangaroo 2696.0 106.0 800.0 11200.0 1357.6
Krull 3864.0 8066.6 12601.4 8647.2 6411.5
Montezuma’s Revenge 50.0 53.0 0.0 0.0 0.0
Name This Game 5439.9 5614.0 6742.0 4503.0 5532.8
Phoenix 28181.8 1762.0 4041.0 14104.7
Pit Fall 123.0 0.0 0.0 8.2
Pong 16.2 114 17.4 21.0 20.8
Private Eye 298.2 194.4 107474 100.0 100.0
Q*Bert 4589.8 13752.3 695.0 147.5 15758.6
River Raid 4065.3 10001.2 2616.0 5009.0 9856.9
Road Runner 9264.0 31769.0 3220.0 16590.0 33846.9
Robotank 58.5 2.3 43.8 11.9 2.2
Seaquest 2793.9 2300.2 716.0 1390.0 1763.7
Skiing 13700.0 7983.6 15442.5 15245.8
Solaris 1884.8 160.0 2090.0 2265.0
Space Invaders 1449.7 2214.7 1251.0 678.5 951.9
Star Gunner 34081.0 64393.0 2720.0 1470.0 40065.6
Tennis 2.3 10.2 0.0 4.5 11.2
Time Pilot 5640.0 5825.0 7340.0 4970.0 4637.5
Tutankham 324 26.1 23.6 130.3 194.3
Up and Down 33113 54525.4 43734.0 67974.0 75785.9
Venture 54.0 19.0 0.0 760.0 0.0
Video Pinball 20228.1 185852.6 0.0 22834.8 46470.1
Wizard of Wor 246.0 5278.0 3360.0 3480.0 1587.5
Yars Revenge 7270.8 24096.4 16401.7 8963.5
Zaxxon 831.0 2659.0 3000.0 6380.0 5.6

Table 2: Final results obtained using Evolution Strategies on Atari 2600 games (feedforward CNN
policy, deterministic policy evaluation, averaged over 10 re-runs with up to 30 random initial no-ops),
and compared to results for DQN and A3C from Mnih et al. [2016] and HyperNEAT from Hausknecht
et al. [2014]. A2C is our synchronous variant of A3C, and its reported scores are obtained with 320M
training frames with the same evaluation setup as for the ES results. All methods were trained on raw

pixel input.



Summary:
Evolution Strategies

Black-box optimizer for non-differentiable objective
functions (e.g. the reward as function of the parameters of a

policy)
No need for backpropagation, i.e. explicit partial derivatives
w.r.t. parameters.

Parallelizes extremely well

Allows exploration of new policies directly on parameter
space. 2 No need to artificially force random exploration
within individual policies. = Works also for fully
deterministic policies.

Can handle credit assignment over long timescales, as full
games/episodes are evaluated to compute gradient
estimates. 2 Works well in environments with long time
horizons and/or sparse rewards.



Active Inference

* Normative theory of brain function

* Motivated by a homeostatic argument:

* To survive in a changing, noisy environment,
a system has to keep certain vital
parameters within strict bounds (think of
body temperature, pH, O,, K*, Na*, ...).

* To do this, it has to keep the entropy of its
distribution on state space low, otherwise
diffusive processes would at a certain point
push one of these variables out of the viable
range, leading to a phase transition (death).




Active Inference

* The entropy of the true states s* can be
bounded by the entropy of the sensory
states o, given the sensory system has a
sufficient mapping from vitally important
states to sensory inputs (globus
caroticus, hypothalamus, macula densa,

).
H(s*) <H(o)+C




Active Inference

* The entropy of the sensory states can be
expressed, assuming ergodicity, as:

H(o) = f “Inp(0) p(0)do

= %j— Inp(o)dt

— Can be minimized by an agent by
minimizing the time integral over surprise

— Inp(0) or by minimizing surprise at every
instant (c.f. Euler-Lagrange formalism)




Active Inference

 Surprise directly is not accessible to the
agent.

* However, if the agent possesses a
generative model of its environment
pe(0,5) = pg(0ols)pe(s) it could
calculate surprise by marginalizing over
hidden states - Computationally
infeasible!




Active Inference

* However, an agent could use a variational
approximation to upper-bound surprise

F(0,0,6) = ) ~Inpy (0 + De (5, GlIposilo)

B Z<_ Inpg (0i]5:))qy, (s + Dk (99, GIpe(s)) ¥

* The sufficient statistics ¢; , representing the
approximate posterior over hidden variables,
given observations, change on a fast timescale
and could be represented using neural activity.

* The parameters 0 of the generative model s*
change slowly with the accumulation of new
observations, and could be represented in terms
of synaptic connectivity.



Active Inference

* |[n contrast to a Variational Autoencoder, an
agent can also act on the world, via active states
a, describing the states of its muscles, motors,
actuators, ...

* The agent’s observations 0 are now a — complex
— function of the agents active states o(a)

* Now the agent can change the states a of its
actuators to minimize a Free Energy bound on
surprise (“Action”), which is made tight by
optimizing the sufficient statistics ¢; of the
variational density q(/)l.(sl-) (“Perception”) and
the parameters 0 of its generative model

py(0,5) = py(0ls)pe(s) (“Learning”)

* Hypothesis: The dynamics of neural activity,
synaptic plasticity and motor activity are given

(a,6,¢) = argmin F(o(a"),6, )
(a%,6",¢")




Active Inference

* Con:
* Very abstract.
* Uses a loooong list of non-trivial assumptions.
* No hard evidence so far.

* Literature up to now has not shown that this functional can actually
lead to intelligent behavior and learning in situations where the agent
does now know a lot about its environment.

* Integrated account of action, perception, behavior.
* Derived from homeostatic (i.e. evolutionary) functional.

* Explains —on an abstract level — basic features of neuroanatomy,
electrophysiology, behavior.

* Some preliminary evidence by behavioral and functional MRI
experiments (far away from cell-physiology).

* To Dos: First steps
* Design experiments and test concrete models against data. ahead now.

*| Demonstrate that Active Inference allows an agent to reach concrete
goals in a not-entirely-trivial environment.




Deep Active Inference

* Implementation of Active Inference using methods
form deep learning (mostly VAE and ES).

e Should scale well to larger environments.

* Up to now only example: Mountain car world.



Mountain Car Problem

0.04

* Agentis a small
car on a hilly sl
landscape

e |t starts at the . 002}
bottom of the
valley at x = —0.5

0.01f

Potential G(z) / a.u

e Wants to reach
position x = 1.0
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Force Fy(z) / a.u.

Mountain Car Problem

* Problem:
Due to limited power output,
Emotor — (0,03, its motor can
not overcome the steep part
of the slope at x = 0 directly.

0.06
Downhill
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0.02 }
0.00}
—0.02
—-0.04+
—-0.06 L L .
-1.0 -0.5 0.0 0.5 1.0

Position z / a.u.

Potential G(z) / a.u.

0.04 T

0.03

0.02

0.01

0.00

-0.01

—0.02

-1.0 -0.5

0.0
Position z / a.u.
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Montain Car Problem

* True state s™ = (as, x¢, V)
* Initial state (a, xo, v9) = (0,—0.5,0)
e Discreet time dynamics:

R = -2
F,(a) = 0.03tanha Motor Output
Ff(v) = —0.25v Friction

dG(x)

Gravity

Vi1 = Ve + Fy(xe) + Fp(ags1) + Fr(ve)
Xe+1 = Xt + Vppq
e Shorthand:
(Xt41, Ves1) = R(X¢, Vg, Qpgq)



Architecture of the Agent

Latent variables: Hidden states in
the agent’s generative model

St-1

Sensory states

Ot—1

True states of
the world

Active states

Dynamics of
the real car.

Motor force

St+1

*
St+1



Architecture of the Agent

@ @ @ Sensory system:

Noisy sense of position

POy ¢|lxt) = N(0y ;%45 0.01)

Irrelevant sensory channel
B (x, — 1.0)?
Ont = EXP\ T 0 32

E3 £ 3
St—1 St St+1

Proprioceptive sensory channel
Oq,t = At

Note: No direct sense of velocity or momentum!




Agent’s Generative Model

)

Priors:
St-1 ¥ St " St+1
p(Se41lse)
_ t t
> o = NGealph (), a6(s0)
] ) . wheresy = (0,...,0)
el S St+1 _
and dims = 10

Implemented using a fully connected network
with tanh-nonlinearity for the means and
softplus nonlinearity for the standard-
deviations.




Agent’s Generative Model

Likelihoods:

St—1 St St+1

l l l Noisy sense of position
0 0
& - Ot+1 p(Ox’tlst) - N(Ox't; 'UHx (st), O-Hx(st)

Irrelevant sensory channel
si sias) P(Onelse) = Nones 15" (50,05 ()

N

Proprioceptive sensory channel
o (0]
p(0g¢|s:) = N(Oa,ti|#9a (5¢), Uga(st))

Implemented by deep feed-forward network with 3
hidden tanh-layers and 10 hidden units per layer.
Means are calculated from last hidden layer by a
linear layer, standard-deviations by a softplus layer.




Recognition density

’——~ ’—-N

@ @ @ Analogous to Variational
Autoencoder:

\ Instead of optimizing sufficient

statistics ¢, of g, (s;) at every
time step, use fixed
approximation by neural

.. sz, networks:

4o (St‘St 1, Ox tr Oh t» Oq t) —
N(s¢;u (St 1» Ox,t» On,t» Oq t) Og (St 1» Ox,t» On,t» Oq tj)

Implemented by deep feed-forward network with 2 hidden tanh-layers and 10
hidden units per layer.

Means are calculated from last hidden layer by a linear layer, standard-deviations by
a softplus layer.




Action

Analogous to Recognition Density:
St—1 St St+1
I * ~Instead of optimizing sufficient
statistics of action states at every
0p_1 @ 0, @ oy, time step, use fixed
approximation by neural
networks:

*k *k £
St—1 St St+1

Po(ariilsy) = N(apiqjug(se), Ug(stj)

Implemented by deep feed-forward network with 1 hidden tanh-layer (10 hidden
units).

Means are calculated from last hidden layer by a linear layer, standard-deviations by
a softplus layer.




Objective Function — Variational Free Energy

F(O, 9) — ’11;=1[
< —Inpg(0yt|s:) —Inpg(opt|s:) —Inpg (Oa,t |St) > Qo (5¢15t—1,0% 6:0h,6:0a,t)

+Dg, (CIH (St |St—1» Ox.t»On,t» Oa,t) ||po (st |St—1))
]

* We use the closed form of Dg; for diagonal Gaussians

* To evaluate this function, we can propagate individual processes,
with *a single sample* per density.



Evaluation

Initialize the free energy estimate with ' =0

Initialize np agents with §9 = (0, ...,0) and (zo,v) = (—0.5,0.0).

for each Agent do

fort=1,...,7 do

Sample an action é; from pg(a¢|8:—1)
Propagate the environment using (z¢,v:) = R(z¢—1,v¢—1, at)
Draw single observations 6, ¢ from pe (0 t|z¢)
Set observation oy 1 = exp(—%ﬁ)
Set observation 04 = a¢
Draw a single sample 8; from qg(s¢|8;—1, 0z, 0n ¢, Oa,t)
Calculate [ = — Eie{z,h,a} In pg(6;.¢|S¢)
Calculate d = DKL(QB(St|§t—1, 6m,ta 5h,t, 5a,t)||P0(St|§t—1))
Increment free energy F' = F' + dn—'*:

Carry §; and (z¢,v;) over to the next time step.
end for
end for
return F

F(Ol 9) — ’{=1[
< —Inpg(oxls:) —Inpg(opcls:) —Inpg (Oa,t |St) 2 Q6 (5t1St—1,02,6:0n,1:04,¢)

+Dkg;, (CIH (St |St—1: Ox,t)On,t» Oa,t) ||po (st |St—1))
]



Optimization

Problem:

We can not directly calculate gradients w.r.t. the parameters of the
action function, as we would have to backpropagate through the
unknown dynamics of the environment.

-y
”_—N ” N\

’, Sa 7 A

P Gt :St+1

’ ’ ’

I I I

\ \ \ Agent does not know
true environmental

N N N
Ot-1 @ Ot @ Ot+1 /| dynamics or their partial

\ l derivatives w.r.t. action.

k k 3k
St-1 St St+1

Solution: That’s why we talked about Evolution Strategies before!



How to set Goals?

Problem:

If we propagate the agent as is, it will find a comfortable stable state
(likely its starting position) and settle there.

Solution:

Instill homeostatic “drive” in terms of very concrete prior about the
agents position at the end of a simulation run.

First, represent the relevant quantity explicitly in terms of a hidden
variable:

do (Sl,t |5t—1» Ox,t>» On t» Oa,t) = N(S1,t; 0.104¢, 0-001)

Second, define very explicit expectations of "where to be” at the
end of an episode (30 time steps):

po(s1¢|si—1) = N(510.1,0.001),t > 20



Nitty gritty

e Using ADAM with standard parameters.
e Using 10000 samples from the population density.

* Using only one process per parameter-sample to.
approximate variational free energy.

* Using desktop computer with NVIDIA Titan (2013)
one optimization step takes about 0.4s, taking up
about 300 MB of GPU memory.
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Free Energy
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Agent learns to first move in opposite direction!
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Results — After convergence
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Results — Sampling

from Generative Model

04(t) sampled
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Constrained - .
ampling constrained on

Sa m p | | N g average action time course,
shifted 10 steps back in time.
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Remember the Imputation of Missing Data using Generative Models (c.f. VAE, Faces, Numbers)



Take home messages

* An agent optimizing the Active Inference objective can reach a
not — entirely — trivial goal while concurrently learning a
generative model of its sensations.

* Constrained sampling might help to learn more about the agent’s
beliefs about the world and possible cognitive "biases” that might
lead to impaired performance or wrong decisions, without the
need for an external simulator.

* By learning a full generative model, which also includes latent
representations to predict initially irrelevant sensory channels,
the agent should be able to generalize well to new goals in terms
of changes in its prior expectations on its latent variables.

* Write-up here:
https://arxiv.org/abs/1709.02341

* Full Code here: https://github.com/kaiu85/deepAl paper




Next steps

* Show comparable performance to state of the art in
complex environments:

Images from: https://blog.openai.com/evolution-strategies/

* Fit more realistic implementation of Active Inference to
actual behavioral and neurophysiological data.



Literature — Variational Autoencoder

* Monograph
* D.P. Kingma, “Variational Inference and Deep Learning: A New Synthesis”, PhD Thesis, http://dpkingma.com

* Papers
* Basics:
* Kingma and Welling, Auto-Encoding Variational Bayes, https://arxiv.org/abs/1312.6114

* Rezende, Mohamed and Wierstra, Stochastic Backpropagation and Approximate Inference in Deep Generative Models
https://arxiv.org/abs/1401.4082

Semi-Supervised Learning:

e Kingma, Rezende, Mohamed and Welling, Semi-Supervised Learning with Deep Generative Models, https://arxiv.org/abs/1406.5298,
Code: https://github.com/dpkingma/nips14-ssl

Time-Series Model:

e Chungetal., Recurrent Latent Variable Model for Sequential Data, https://arxiv.org/abs/1506.02216,
Code: https://github.com/jych/nips2015 vrnn, Samples: https://github.com/kastnerkyle/vrnn-samples

Normalizing Flows:
* Rezende and Mohamed, Variational Inference with Normalizing Flows, https://arxiv.org/abs/1505.05770

*  Tomczak and Welling , Improving Variational Auto-Encoders using Householder Flow, https://arxiv.org/abs/1611.09630,
Code: https://github.com/jmtomczak/vae householder flow

e Kingma et al., Improving Variational Inference with Inverse Autoregressive Flow, https://arxiv.org/abs/1606.04934,
Code: https://github.com/openai/iaf

ADAM Optimizer:
* Ba & Kingma, Adam: A Method for Stochastic Optimization, https://arxiv.org/abs/1412.6980

* Blog Post

* F. Huszar, Choice of Recognition Models in VAEs: a regularisation view, http://www.inference.vc/choice-of-recognition-
models-in-vaes-a-regularisation-view/

* Other implementations:
* PyTorch Example: https://github.com/pytorch/examples/tree/master/vae




Literature — Evolution Strategies

* Paper:
e Salimans et al., Evolution Strategies as a Scalable Alternative

to Reinforcement Learning, https://arxiv.org/abs/1703.03864,
Code: https://github.comﬁopenai/evolution—strategies-starter

* Blog-Posts
e OpenAl: https://blog.openai.com/evolution-strategies/
* F. Huszar:

* http://www.inference.vc/evolutionary-strategies-embarrassingly-parallelizable-optimization/
* http://www.inference.vc/evolution-strategies-variational-optimisation-and-natural-es-2/

e Other implementations

* Very didactic implementation by A. Karpathy:
https://gist.github.com/karpathy = nes.py




Literature — Active Inference

* Papers:
e Qutline of the theory:

* Friston, Daunizeau, Kilner and Kiebel, Action and behavior: a free-energy formulation,
2012, Biological Cybernetics, Vol. 102(3), 227-260

* Friston, The free-energy principle: a rough guide to the brain?, 2009, Trends in
Cognitive Sciences, Vol. 13(7), 293-301

* Friston, The free-energy principle: a unified brain theory?, Nature Reviews
Neuroscience, 2010, Vol. 11, 127-138

e Some behavioral evidence:

* Schwartenbeck, FitzGerald, Mathys, Dolan, Kronbichler and Friston, Evidence for

surprise minimization over value maximization in choice behavior, 2015, Scientific
Reports, Vol. 5

* Most recent formulation with review of neurobiological evidence:

* Friston, FitzGerald, Rigoli, Schwartenbeck and Pezzulo, Active Inference: A Process
Theory, Neural Computation, 2017, Vol. 29(1), 1-19

 Karl Friston’s Homepage: http://www.fil.ion.ucl.ac.uk/~karl/

e Video Lecture:
* http://videolectures.net/cyberstat2012 friston free energy/
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