




From the Bayesian Brain	to
Active Inference...

Kai	Ueltzhöffer,	9.10.2017

...and the other way round.



Disclaimer

• Today:	
Overview	Talk!	100%	*NOT*	my	own	work.	
But	important	to	give	some	context	and	motivation	
for…

• Next	week:	
Mostly	my	own	work	(+	some	basics)	J.



How	do	we	perceive	the	world?

Senses:	Vision,	Hearing,	Smell,	Taste,	
Touch,	Nociception,	
Interoception,	Proprioception



A	(possible)	solution
Predictions	&	interaction

Senses:	Vision,	Hearing,	Smell,	Taste,	
Touch,	Interoception,	Proprioception

(Implicit)	prior	
knowledge

Hermann	von	Helmholz,	
“Handbuch der	
physiologischen Optik”,	
1867



How	to	formalise such	a	theory?

• Probability	theory	allows	to	make	exact	statements	
about	uncertain	information.
• Among	others,	a	recipe	to	optimally combine	a	
priori	knowledge (“a	prior”)	with	observations.

à Bayes’	Theorem



Bayes’	Theorem

Thomas	Bayes,
1701-1761

𝑃 𝐻 𝐷 𝑃 𝐷 = 𝑃(𝐻, 𝐷) = 𝑃 𝐷 𝐻 𝑃(𝐻)

⟹ 𝑃 𝐻 𝐷 =
𝑃 𝐷 𝐻 𝑃(𝐻)

𝑃(𝐷)

• P(H):	“Prior”	probability	that	hypothesis	H	about	
the	world	is	true.

• P(D):	Probability	of	observing	D
• P(D|H):	Probability	of	observing	D,	given	that	

hypothesis	H	is	true.	à “Likelihood”	function.
• P(H|D):	Probability	that	hypothesis	H	is	true,	given	

that	D	was	observed.	à “Posterior”



A	(possible)	solution
Predictions	&	interaction

Senses:	Vision,	Hearing,	Smell,	Taste,	
Touch,	Interoception,	Proprioception

(Implicit)	prior	
knowledge

Hermann	von	Helmholz,	
“Handbuch der	
physiologischen Optik”,	
1867

𝑃(𝐻)

𝑃(𝐷|𝐻)

𝑃(𝐻|𝐷)



Optimal	perception	with	Bayes’	Theorem

𝑃 𝑋 𝐴 =
𝑃 𝐴 𝑋 𝑃(𝑋)

𝑃(𝐴)“Tock,	tock,	
tock,	…“

P(X):	Prior	probability	for	Hypothesis	“The	
woodpecker*	sits	at	position	X”.	A	
woodpecker	should	be	somewhere	close	to	
the	trunk	of	the	tree.

x

x
P(A|X):	Probability	of	hearing	“toc,	toc,	toc”	
from	the	left	side	of	the	tree,	given	the	bird’s	
position	is	X.	Likelihood	function	allows	to	
imagine	sensory	consequences	from	
hypotheses	about	the	world.
P(X|A):	Posterior	probability	of	the	bird’s	
position	X,	given	the	“toc,	toc,	toc”	sound	is	
heard	at	the	let	side	of	the	tree.

Combined:	

x

*woodpecker	=	Specht



“Tock,	tock,	
tock,	…“

P(X|A):	Posterior	probability	of	the	bird’s	
position	X,	given	the	“toc,	toc,	toc”	sound	is	
heard	at	the	let	side	of	the	tree.

x

𝑃 𝐻 𝐴, 𝑉	 =
𝑃 𝑉 𝑋 𝑃 𝑋 𝐴

𝑃(𝑉|𝐴)

x

P(V|X):	Probability	of	observing	the	
woodpecker	at	the	left	side	of	the	trunk,	
given	it’s	position	X.

x

P(X|A,V):	Posterior	probability	of	the	bird’s	
position	X,	given	auditory	and	visual	
information.

Combined:	

Optimal	perception	with	Bayes’	Theorem



Sounds	reasonable,	but	might	it	be	true?

x

x

Combined

Auditory

Visual

Only	audio Only	visual	information	
with	decreasing	
accuracy

Varying	
offsets	of	
visual	to	
auditory	
information

Varying	
accuracy	of	
visual	
information.

Alais &	Burr,	The	
ventriloquist effect	results	
from	near-optimal	bimodal	
integration,	Curr.	Biol.,	2004



Ernst&	Banks,	Humans	integrate	
visual	and	haptic	information	in	a	
statistically	optimal	fashion,	Nature,	
2002

Visual

Sounds	reasonable,	but	might	it	be	true?



Adams,	Graf	&	Ernst,	Experience	
can	change	the	‘light-from-above’	
prior,	Nat.	Neuroscience,	2004

Sounds	reasonable,	but	might	it	be	true?



F.	Petzschner,	
https://bitbucket.org/fpetzschner/cpc2016



How	might	Bayesian	
Inference	be	
implemented	in	the	
Brain?*

• Dynamic
• Complex
• Hierarchically	Structured

Friston,
Phil.	Trans.	
R.	Soc.	B,	
2005

*Disclaimer:	Now	it	gets	speculative!



Some	Assumptions	about	Model	Structure

𝑝 𝑜(𝑡), 𝑥(𝑡) = 𝑝 𝑜 𝑡 𝑥 𝑡 𝑝(𝑥(𝑡))

Generative	Model:

Observations:	

• Vision:	“A	large	
pink	thing	in	
the	shape	of	an	
elephant”	

• Hearing:	
“Trooeeeet”	

• Touch:	The	
ground	is	
vibrating

“A	pink	elephant	is	just	right	
in	front	of	me.”

“Likelihood”:	How	would	a	pink	elephant	look	like?

“Prior”:	Pink	elephants	
are	not	very	common.



Some	Assumptions	about	Model	Structure
Hidden	Variables: 𝑥 = {𝜃, 𝑠(𝑡)}

”Parameters”,	encode	
slowly	changing	
dependencies,	physical	
laws,	general	rules

”States”,	encode	hidden	reasons	for	
observations	on	fast	timescale,	object	
identities,	positions,	physical	properties,	…

𝑝 𝜃, 𝑠 𝑡 = 𝑝 𝑠 𝑡 𝜃 𝑝(𝜃)Hierarchy:

𝑝 𝑜 𝑡 |𝜃, 𝑠(𝑡6 ≤ 𝑡) = 𝑝 𝑜 𝑡 𝜃, 𝑠(𝑡)Factorization:

The	parameters	(general	laws)	govern	how	the	hidden	states	of	the	world	
(which	might	have	another	hierarchy	by	themselves)	evolve

My	sensory	input	right	now	only	depends	on	the	general	laws	of	the	world	
and	the	state	of	the	world	right	now.



Three	very	hard	problems:
3.	Action:	Optimize	behavior	(later)

2.	Learning:	Optimize	
generative	model

1.	Perception:	Invert	
generative	model



𝑝 𝑠 𝑡 |𝑜 𝑡 =
𝑝 𝑜 𝑡 𝑠 𝑡 𝑝(𝑠(𝑡))	

𝑝(𝑜 𝑡 )

Invert	Generative	Model	using	Bayes’	Theorem:
Problem	1:	Perception	(Inference	on	States)

Observations:	Vision:	“A	large	pink	
thing	in	the	shape	of	an	elephant”	
Hearing:	A	loud	trumpet.	Touch:	The	
ground	is	vibrating

“Maybe	there	
is	really	a	pink	
elephant	right	
in	front	of	
me.”

It’s	not	very	likely,	to	make	such	
observations.

“Likelihood”:	How	would	a	pink	elephant	look	like? “Prior”:	Pink	elephants	
are	not	very	common.

𝑝 𝑜 𝑡 = 8𝑝 𝑜 𝑡 |𝑠 𝑡 , 𝜃 𝑝 𝑠 𝑡 𝜃 𝑝(𝜃)d𝑠 𝑡 d𝜃
�

�
𝑝 𝑠 𝑡 = ;𝑝 𝑠 𝑡 |𝜃 𝑝(𝜃)	d𝜃	

�

�

𝑝 𝑜 𝑡 |𝑠(𝑡) = ;𝑝 𝑜 𝑡 |𝑠 𝑡 , 𝜃 𝑝(𝜃)d𝜃
�

�

Buuuuut:

Extremely	high-dimensional	integrals!	Not	even	highly	
parallel	computational	architectures,	such	as	the	brain,	can	
solve	these	exactly.



Problem	2:	Learning	(Inference	on	Parameters)

Given	some	observations	𝑜(𝑡<), … , 𝑜(𝑡>) at	times	𝑡< < 𝑡@ < ⋯ < 𝑡> use	Bayes‘	
Theorem	to	update	parameters	𝜃:	

𝑝(𝜃|𝑜(𝑡<), … , 𝑜(𝑡>)) = 
B C DE ,…,C(DF G B(G)	

B(C(DE),…,C(DF))	

“Now	that	I’ve	seen	a	pink	elephant,	maybe	they	are	not	that	unlikely	after	all…”

𝑝 𝑜 𝑡< , … , 𝑜(𝑡> 𝜃 = ;𝑝 𝑜 𝑡< , … , 𝑜(𝑡> , 𝑠 𝑡< , … , 𝑠 𝑡> 𝜃 d𝑠 𝑡< …d𝑠 𝑡>

�

�

Buuuuuut (again):

𝑝 𝑜 𝑡< , … , 𝑜(𝑡> ) = 8𝑝 𝑜 𝑡< , … , 𝑜(𝑡> , 𝑠 𝑡< , … , 𝑠 𝑡> , 𝜃)d𝑠 𝑡< …d𝑠 𝑡>

�

�

d𝜃

Extremely	high-dimensional	integrals!	Not	even	highly	
parallel	computational	architectures,	such	as	the	brain,	can	
solve	these.

𝑝(𝜃|𝑜(𝑡<), … , 𝑜(𝑡>)) =
B(C(DF)|G,C(DE),…,C(DFHE))	B(G|C(DE),…,C(DFHE))	

B(C(DF))	

In	„real	time“	the	agent	could	update	its	parameters	in	the	following	way:

This	leads	to	comparatively	„slow”	update	dynamics,	compared	to	the	dynamics	of	the	
hidden	states,	which	might	completely	change	according	to	the	current	observation.



Timescale	of	Perception

Given	observations 𝑜(𝑡<), … , 𝑜(𝑡>) at	times 𝑡< < 𝑡@ <
⋯ < 𝑡>,	the posterior probability on	the state 𝑠 𝑡> at	
time	𝑡>

𝑝 𝑠 𝑡> |𝑜(𝑡<), … , 𝑜(𝑡>) = 𝑝 𝑠 𝑡> |𝑜(𝑡>)	
only	depends	on	the	current	observation	𝑜(𝑡>)	at	this	
time,	and	the	time	invariant	parameters	𝜃.	I.e.	as	the	
state	of	the	world	changes	very	quickly	(e.g.	a	tiger	
jumping	into	your	field	of	view),	the	dynamics	of	the	
representation	of	the	corresponding	posterior	
distribution	over	states	𝑠 𝑡 are	also	very	fast.



Timescale	of	Learning
As	the	agent	makes	observations	𝑜(𝑡<), … , 𝑜(𝑡>) at	times	𝑡< < 𝑡@ < ⋯ < 𝑡>,	
the	posterior	probability	on	the	parameters,	given	observations,	gets	a	
Bayesian	update

𝑝 𝜃 𝑜 𝑡< , … , 𝑜(𝑡> =
𝑝(𝑜(𝑡>)|𝜃, 𝑜(𝑡<), … , 𝑜(𝑡>O<))	𝑝(𝜃|𝑜(𝑡<), … , 𝑜(𝑡>O<))	

𝑝(𝑜(𝑡>))	
for	each	new	observation,	here	shown	for	the	last	observation	at	𝑡>.	The	more	
observations	the	agent	has	made	before,	the	more	constrained	its	estimate	
𝑝(𝜃|𝑜(𝑡<), … , 𝑜(𝑡>O<)) on	the	true	parameters	𝜃 is	already.	I.e.	while	the	
representation	of	the	posterior	density	on	parameters,	given	observations,	
might	initially	change	rather	quickly,	its	dynamics	will	slow	down	the	more	the	
agent	sees	– and	therefore	learns	– from	its	environment.	Later	on,	strong	
evidence	or	many	observations	are	required	for	large	changes	in	the	parameter	
estimates.	Thus,	the	dynamics	of	the	representation	of	the	posterior	density	on	
the	parameters	will	be	rather	slow.



(A	possible)	solution:	
Variational	Inference*

Recipe:
• Given	observations	𝑜 = {𝑜 𝑡< , … , 𝑜 𝑡> },	
and	generative	model	𝑝 𝑜, 𝜃, 𝑠 = 𝑝 𝑜 𝜃, 𝑠 𝑝(𝜃, 𝑠),	where	s = {𝑠 𝑡< , … , 𝑠 𝑡> }

• Introduce	approximation	𝑞Q(𝜃, 𝑠) to	posterior	density	𝑝 𝜃, 𝑠 𝑜 ,	parameterized	
by	sufficient	statistics	𝜇 = {𝜇G, 𝜇S DE , … , 𝜇S DF }.	

• Minimize	the	variational	free	energy	
𝐹 𝑜, 𝜇 = − ln 𝑝 𝑜 + 𝐷YZ 𝑞Q 𝜃, 𝑠 ||	𝑝 𝜃, 𝑠 𝑜

• This	will	maximize the evidence 𝑝 𝑜 for the agent‘s model of the world,	while
simultaneously driving 𝒒𝝁 𝜽, 𝒔 towards the true posterior 𝒑 𝜽, 𝒔 𝒐 .

*Disclaimer:	Will	be	combined	with	Monte-Carlo	Sampling	next	week!	J

Always	≥ 0,	equal	to	0	if	and	only	
if	both	distributions	are	equal.	(But	
not	symmetrical!)

Converts	a	complex	integration	to	an	
optimization	problem.

Feynman,	1972



Short	interrupt:	KL-Divergence

𝐷YZ 𝑞Q 𝜃, 𝑠 ||	𝑝 𝜃, 𝑠 𝑜 = 	 ln
𝑞Q 𝜃, 𝑠
𝑝 𝜃, 𝑠 𝑜

cd G,S

Expectation	with	respect	to	𝑞Q 𝜃, 𝑠

It’s	really	easy	to	evaluate	for	Gaussians:

𝐷YZ 𝑁 𝑥; 𝜇<, 𝜎< ||𝑁 𝑥; 𝜇@, 𝜎@ = 	 ln
𝑁 𝑥; 𝜇<, 𝜎<
𝑁 𝑥; 𝜇@, 𝜎@ h i;QE,jE

													= ln	 jk
jE
+ jEkl QEOQk k

@jkk
− <

@



What	have	we	won?
To	minimize,	we	have	to	evaluate the	variational	Free	Energy
𝐹 𝑜, 𝜇 = − ln 𝑝 𝑜 + 𝐷YZ 𝑞Q 𝜃, 𝑠 ||	𝑝 𝜃, 𝑠 𝑜

🐶🐍* 🐉How	hard
to	evaluate:

can	be rewritten as
𝐹 𝑜, 𝜇 =< − ln 𝑝 𝑜 𝜃, 𝑠 >cd G,S +𝐷YZ 𝑞Q 𝜃, 𝑠 ||	𝑝(𝜃, 𝑠)

How	hard
to	evaluate: 🐶

*illustration	of	variational	inference	with	emojis from:	http://www.inference.vc/choice-of-recognition-models-in-vaes-a-regularisation-view/

🐣
or (for Physicists):
𝐹 𝑜, 𝜇 =< − ln 𝑝 𝑜, 𝜃, 𝑠 >cd G,S −< − ln 𝑞Q 𝜃, 𝑠 >cd G,S

How	hard
to	evaluate: 🐨 Expected	Energy 🐶 Entropy

🐹 “Accuracy”

“Complexity”

This	is	just	the	
posterior,	that	we	
want	to	approximate!



Predictive	Coding
Assume	simplest	way	of	minimizing	F	possible:	
Gradient	Descent
The	sufficient	statistics	𝜇G and	𝜇S	change	to	minimize	the	Free	
Energy	F 𝜇G, 𝜇S, 𝑜 via:

𝜇Ġ ∝ −𝛻QrF 𝜇G, 𝜇S, 𝑜 	
𝜇Ṡ ∝ −𝛻QsF 𝜇G, 𝜇S, 𝑜

The	dynamics	of	the	sufficient	statistics	𝝁𝜽 of	the	approximate	
posterior	density	over	parameters	𝜽 of	the	generative	model	
are	very	slow:	
à 𝝁𝜽	can	be	represented	in	terms	of	synaptic	connectivity.

The	dynamics	of	the	sufficient	statistics	𝝁𝒔 of	the	approximate	
posterior	density	over	hidden	states	𝒔 are	fast:
à 𝝁𝒔	can	be	represented	in	terms	of	neural	activity.



Predictive	Coding:
Additional	assumptions	about	
the	structure	and	
implementation	of	the	states	
𝑠 𝑡 :

• Probabilities	represented	by	
Gaussians,	where	sufficient	
statistics	𝜇S 𝑡 and	𝜇G
represent	means	and	
covariance	matrices.
Inverse	covariance	matrix	=	
“precision”

• Hierarchical	temporal	
structure	of	states	𝑠 𝑡 .

Predictive Coding

Prefrontal Cortex

Secondary Sensory
Cortex

Primary	Sensory Cortex

Sensory Input

Prediction

Prediction

Prediction

Prediction Error

Prediction Error

Prediction Error

Recurrent	neural	
dynamics	at	
each	level	can	
implement	
attractor	
networks,	
winner-take-all	
networks,	
winnerless
competition,…

c.f.	Friston,
Phil.	Trans.	R.	Soc.	B,	2005



Reality	check

Adams	et	al.,	The	Computational	
Anatomy	of	Psychosis,	Front.	
Psychiatry,	2014

Bendixen et	al.,	Prediction	in	the	
service	of	comprehension:	

Modulated	early	brain	responses	
to	omitted	speech	segments,	

Cortex,	2014



Friston &	Kiebel,	Attractors	in	Song,	New	Mathematics	and	
Natural	Computation,	2009,	

P300

Nagai	et	al.,	Front.	Psychiatry,	
2013

Zevin et	al.,	Front.	Hum.	
Neurosci.,	2010

Standard
Deviant
Difference

Reality	check



Predictive	Coding	Summary
• Our	brain	uses	a	variational	approximation	to	

invert	and	optimize	a	generative	model	of	its	
sensations.

• The	model	corresponds	to	the	world,	i.e.	it	is	
nonlinear,	dynamic	and	hierarchically	structured.

• The	posterior	on	states	is	represented	by	means	of	
neural	activity,	the	posterior	on	parameters	is	
represented	by	means	of	synaptic	connectivity.

• Using	simple	assumptions	about	the	hierarchical	
form,	the	distributions	(Gaussians)	and	the	
optimization	(Gradient	Descent),	the	resulting	
predictive	coding	scheme	matches	cortical	
hierarchies,	behavioral	data,	and	
neurophysiological	responses,	such	as	repetition	
suppression,	omission	responses,	and	mismatch	
negativity.

Bastos	et	al.,	Canonical	Microcircuits	for	
Predictive	Coding,	Neuron,	2012



Active	Inference:	Predictive	
Coding	with	Reflex	Arcs

Friston,	Daunizeau,	Kilner,	Kiebel,	Action	and	
behavior:	a	free-energy	formulation,	Biol.	
Cybernetics,	2011

Corresponds	nicely	to	the	architecture	
of	our	motor	system.



Remember the following form	of the variational	Free	Energy:
𝐹 𝑜, 𝜇 =< − ln 𝑝 𝑜 𝜃, 𝑠 >cd G,S +𝐷YZ 𝑞Q 𝜃, 𝑠 ||	𝑝(𝜃, 𝑠)

How	hard
to	evaluate: 🐶 🐣🐹 “Accuracy”

How	to	formulate	this?

“Complexity”

The	accuracy term	depends	on	
observations,	which	in	turn	depend	on	the	
current,	true	state	of	the	world,	which	again	
depends	on	the	agent’s	actions.

By	choosing	actions	𝒂 𝒕 ,	in	terms	of	the	states	of	
output	organs	(muscles,	mainly…),	to	minimize	
variational	Free	Energy,	the	agent	will	seek	out	
sensations,	that	are	likely	under	its	generative	model	of	
the	world	and	its	current	beliefs	about	the	state	of	the	
world.



Summary:	Active	Inference
The	sufficient	statistics
• 𝜇G of	the	parameters	of	the	generative	model
• 𝜇S of	the	hidden	states	of	the	world
• 𝜇w of	the	states	of	the	agent’s	effector	organs
all	change	to	minimize	the	variational	Free	Energy	𝐹

𝜇G, 𝜇S, 𝜇w = argmin
Qr
∗ ,Qs∗,Q{∗

𝐹(𝑜 𝜇w∗ , 𝜇G∗ , 𝜇S∗)	

Where	

𝐹 𝑜, 𝜇 =< − ln 𝑝 𝑜 𝜃, 𝑠 >cd G,S +𝐷YZ 𝑞Q 𝜃, 𝑠 ||	𝑝(𝜃, 𝑠)



Some	preliminary	thoughts…
• Right	now	Active	Inference	gives	an	abstract	
account	of	the	hierarchical	architecture	of	the	
cortex,	the	basic	architecture	of	the	motor	system,	
perceptual	phenomena,	and	macroscopic	neural	
responses.
• But	we	used	a	looooooong list	of	assumptions	and	
seemingly	counter-intuitive	arguments,	i.e.

Does this view of action not implicate, that I should
retire to a dark room and turn off the light? I would be
able to exactly predict my sensory input and all would
be fine. Well, … at	some	point,	you	would	

get	thirsty.



Evolutionary	Argument
• In	order	to	survive,	an	agent	has	to	keep	certain	inner	parameters	within	very	
strict	bounds.

• Thus,	it	has	to	constrain	the	entropy	of	the	probability	distributions	over	these	
parameters.

• But	entropy	is	just:	
𝐻 𝑆 =< − ln 𝑝 𝑠 >B S

• Assuming	we	have	sensory	systems,	that	give	us	access	to	the	relevant	
parameters	(glomus	caroticus,	osmoreceptors in	the	hypothalamus,	macula	
densa,	…)	this can be upper bounded by:	

𝐻 𝑆 ≤ 𝐻 𝑂 + const.
• Where

𝐻 𝑂 =< − ln 𝑝 𝑜 >B C = lim
�→�

1
𝑇; − ln 𝑝 𝑜 𝑡 d𝑡

�

�

Ergodicity

The	agent	can	keep	its	physiological	variables	within	viable	bounds	by	
minimizing	sensory	surprise	at	all	times	(Euler-Lagrange-Equation).



Closing	the	circle…
Variational	Free	Energy	is	just:

𝐹 𝑜, 𝜇 = − ln 𝑝 𝑜 + 𝐷YZ 𝑞Q 𝜃, 𝑠 ||	𝑝 𝜃, 𝑠 𝑜

🐶🐍 🐉How	hard
to	evaluate:

• By	minimizing	Free	Energy	using	action,	an	agent	upper	bounds	its	sensory	surprise.

• Thereby,	it	can	counteract	dispersive	effects	of	the	environment,	to	sustain	its	
physiological	variables	(e.g.	its	inner	milieu)	within	viable	bounds.

• So	the	Bayes-optimal	learning	and	perception	that	we	started	with	is	only	a	by-product,	
required	to	make the	Free	Energy,	which	can	be	evaluated and	influenced by	the	
agent,	a	tight	bound	on	sensory	surprise,	to	allow	for	an	agent’s	survival.

≥ 0



Closing	the	circle…

																		=< − ln 𝑝 𝑜 𝜃, 𝑠 >cd G,S +𝐷YZ 𝑞Q 𝜃, 𝑠 ||	𝑝(𝜃, 𝑠)

																		=< − ln 𝑝 𝑜, 𝜃, 𝑠 >cd G,S −< − ln 𝑞Q 𝜃, 𝑠 >cd G,S

Variational	Free	Energy	is	just:

𝐹 𝑜, 𝜇 = − ln 𝑝 𝑜 + 𝐷YZ 𝑞Q 𝜃, 𝑠 ||	𝑝 𝜃, 𝑠 𝑜

≥ 0

																		=< − ln 𝑝 𝑜|𝜃, 𝑠 𝑝(𝜃, 𝑠) >cd G,S −< − ln 𝑞Q 𝜃, 𝑠 >cd G,S

“Goals”	or	“Utility”	in	
terms	of	prior	
expectations	on	states	to	
be	in,	𝑝(𝜃, 𝑠).	States	to	be	
highly	frequented	are	
associated	with	“high	
reward”.	à Next	Week

Maximize	entropy of	
variational	density	à
Keeping	your	options	
open,	Novelty	Seeking,	
Curiosity



Some	First	Evidence

Schwartenbeck et.	al,	Evidence for	surprise	minimization	over	value	maximization	in	choice	
behavior,	Scientific	Reports,	2015


