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Disclaimer

* Today:
Overview Talk! 100% *NOT* my own work.
But important to give some context and motivation
for...

* Next week:
Mostly my own work (+ some basics) ©.



How do we perceive the world?

Senses: Vision, Hearing, Smell, Taste,
Touch, Nociception,
| Interoception, Proprioception |




A (possible) solution

Predictions & interaction

(Implicit) prior
knowledge

=

Hermann von Helmholz,

“Handbuch der Senses: Vision, Hearing, Smell, Taste,
physiologischen Optik”, Touch, Interoception, Proprioception
1867



How to formalise such a theory?

* Probability theory allows to make exact statements
about uncertain information.

* Among others, a recipe to optimally combine a
priori knowledge (“a prior”) with observations.
— Bayes’ Theorem



Bayes’ Theorem

P(H|D)P(D) = P(H,D) = P(D|H)P(H)
P(D|H)P(H)

P(D)

= P(H|D) =

* P(H): “Prior” probability that hypothesis H about
the world is true.

e P(D): Probability of observing D

* P(D|H): Probability of observing D, given that
hypothesis H is true. =2 “Likelihood” function.

* P(H|D): Probability that hypothesis H is true, given
that D was observed. - “Posterior”

Thomas Bayes,
1701-1761



A (possible) solution

Predictions & interaction

P(D|H)

(Implicit) prior
knowledge

=)

P(H)

P(H|D)

Hermann von Helmholz,

“Handbuch der Senses: Vision, Hearing, Smell, Taste,
physiologischen Optik”, Touch, Interoception, Proprioception
1867



Optimal perception with Bayes’ Theorem

P(A|IX)P(X)

P(X|A) = P

“Tock, tock,
tock, ...”

P(X): Prior probability for Hypothesis “The
woodpecker* sits at position X”. A

/\

4
X

woodpecker should be somewhere close to
the trunk of the tree.

/\ P(A|X): Probability of hearing “toc, toc, toc”

v
x

- from the left side of the tree, given the bird’s
Combined: position is X. Likelihood function allows to
imagine sensory consequences from

hypotheses about the world.
P(X|A): Posterior probability of the bird’s

v
x

position X, given the “toc, toc, toc” sound is
heard at the let side of the tree.

*woodpecker = Specht



Optimal perception with Bayes’ Theorem

P(V|X)P(X|A)

P(HIA, V) = PR

“Tock, tock,
tock, ...”

/\ P(X|A): Posterior probability of the bird’s
position X, given the “toc, toc, toc” sound is

v
X

heard at the let side of the tree.

P(V|X): Probability of observing the
woodpecker at the left side of the trunk,

> X
. given it’s position X.
Combined:
P(X|A,V): Posterior probability of the bird’s
. x position X, given auditory and visual

information.



Sounds reasonable, but might it be true?
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Sounds reasonable, but might it be true?
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Ernst& Banks, Humans integrate
visual and haptic informationin a
statistically optimal fashion, Nature,
2002



Sounds reasonable, but might it be true?

WJA CHR

Pre-training

—m- +30° group (n =6
5 --@-—30° gg;roug sn = 8;

Infered light position (°) €

Pre-training Post-training

Adams, Graf & Ernst, Experience
can change the ‘light-from-above’
prior, Nat. Neuroscience, 2004



The success story of Bayesian Models for Perception

[Friston and Stephan, 2007; Knill and Pouget, 2004; Knill and Richards, 1996].

Magnitude Estimation [Shadlen, Kiani, Glasauer, Petzschner ...]

Visual perception [Weiss, Simoncelli, Adelson, Richards, Freeman, Feldman, Kersten, Knill, Maloney, Olshausen, Jacobs, Pouget, ...]

Language acquisition and processing [Brent, de Marken, Niyogi, Klein, Manning, Jurafsky, Keller, Levy, Hale, Johnson, Griffiths, Perfors, Tenenbaum, ...]
Motor learning and motor control [Ghahramani, Jordan, Wolpert, Kording, Kawato, Doya, Todorov, Shadmehr, ...]

Associative learning [Dayan, Daw, Kakade, Courville, Touretzky, Kruschke, ...]

Memory [Anderson, Schooler, Shiffrin, Steyvers, Griffiths, McClelland, ...]

Attention [Mozer, Huber, Torralba, Oliva, Geisler, Yu, Itti, Baldi, ...]

Categorization and concept learning [Anderson, Nosfosky, Rehder, Navarro, Griffiths, Feldman, Tenenbaum, Rosseel, Goodman, Kemp, Mansinghka, ...]
Reasoning [Chater, Oaksford, Sloman, McKenzie, Heit, Tenenbaum, Kemp, ...]

Causal inference [Waldmann, Sloman, Steyvers, Griffiths, Tenenbaum, Yuille, ...]

Decision making and theory of mind [Lee, Stankiewicz, Rao, Baker, Goodman, Tenenbaum, ...]

F. Petzschner,
https://bitbucket.org/fpetzschner/cpc2016
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/ processing hierarchy

backwal

Friston,
Phil. Trans.
R. Soc. B,
2005
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*Disclaimer: Now it gets speculative!



Some Assumptions about Model Structure

Generative Model:

“Prior”: Pink elephants
.~ are not very common.
p(/O(t),x(t)) = plo(®)[x(®)p(x(1))
. T
Observations: “Likelihood”: How would a pink elephant look like?
* Vision: “A large
pink thing in
the shape of an
elephant”
* Hearing:
“Trooeeeet”
* Touch: The
ground is
vibrating

“A pink elephant is just right
in front of me.”



Some Assumptions about Model Structure

Hidden Variables: x =1{60,s(t)}

"Parameters”, encode / \ ”States”, encode hidden reasons for
slowly changing observations on fast timescale, object
dependencies, physical identities, positions, physical properties, ...
laws, general rules

Hierarchy: p(@, s(t)) = p(s(t)|6)p(O)

The parameters (general laws) govern how the hidden states of the world
(which might have another hierarchy by themselves) evolve

Factorization: p(o(t)|8,s(t’' <t)) = p(o(t)|0,s(t))

My sensory input right now only depends on the general laws of the world
and the state of the world right now.



Three very hard problems:

3. Action: Optimize behavior (later)

2. Learning: Optimize
generative model

1. Perception: Invert )
generative model



Problem 1: Perception (Inference on States)

Invert Generative Model using Bayes’ Theorem:

e ", - ike?
Likelihood”: How would a pink elephant look like “Prior”: Pink elephants

\ / are not very common.
p(s(Dlo()) = p(o(t)|s(t))p(s(t))
p(o(t))
/ \ It’s not very likely, to make such

“Maybe there \ observations.
is really a pink
elephant right Observations: Vision: “A large pink
in front of thing in the shape of an elephant”
me.” Hearing: A loud trumpet. Touch: The

ground is vibrating
suuiuut: | p(odls(®) = [ plo@Is®), Op@)d0
p(0®) = [[ POMIS®, OpG@IOP@O)ds@)d0
p(5®) = [ ps10(©) do

Extremely high-dimensional integrals! Not even highly
parallel computational architectures, such as the brain, can
solve these exactly.




Problem 2: Learning (Inference on Parameters)

Given some observations o(t;), ...,0(t,,) at timest; < t, < --- < t,, use Bayes’
Theorem to update parameters 6:

- p(o(tl)l!o(tn)lg)p(e)
p(e |O(t1)’ T O(tn)) - p(O(tl),...,O(tn))

“Now that I've seen a pink elephant, maybe they are not that unlikely after all...”

In ,real time“ the agent could update its parameters in the following way:

Olo(t) . o(t.)) = p(o(tn)|6,0(t1),-,0(tn—1)) P(Bl0(t1),-..0(tn-1))
This leads to comparatively ,,slow” update dynamics, compared to the dynamics of the
hidden states, which might completely change according to the current observation.

Buuuuuut (again):

p(o(ty),...,0(t,)|0) = fp(o(tl), .., 0(ty),s(ty), ...,s(t,)|0)ds(ty) ...ds(t,,)
p(o(ty),...,o(t,)) = ﬂ p(o(ty), ...,0(t,),s(ty), ...,s(t,), 8)ds(ty) ...ds(t,,) db

Extremely high-dimensional integrals! Not even highly
parallel computational architectures, such as the brain, can
solve these.




Timescale of Perception

Given observations o(ty), ..., 0(t,,) attimes t; < t, <
.-+ < t,,, the posterior probability on the state s(t,,) at
time t,

p(s(ty)lo(ty), ..., 0(tn)) = p(s(tn)lo(tn) )
only depends on the current observation o(t,,) at this
time, and the time invariant parameters 0. l.e. as the
state of the world changes very quickly (e.g. a tiger
jumping into your field of view), the dynamics of the

representation of the corresponding posterior
distribution over states s(t) are also very fast.



Timescale of Learning

As the agent makes observations o(t;), ...,0(t;,;)) attimes t; < t, < -+ < tp,,
the posterior probability on the parameters, given observations, gets a
Bayesian update

_ po(tp)]8,0(t1), ..., 0(tn-1)) p(Blo(t1), ..., 0(tn-1))
p(@lo(tl), rery O(tn)) - p(O(tn))

for each new observation, here shown for the last observation at t,,. The more
observations the agent has made before, the more constrained its estimate
p(Blo(ty), ...,0(t,—1)) on the true parameters 0 is already. l.e. while the
representation of the posterior density on parameters, given observations,
might initially change rather quickly, its dynamics will slow down the more the
agent sees — and therefore learns — from its environment. Later on, strong
evidence or many observations are required for large changes in the parameter
estimates. Thus, the dynamics of the representation of the posterior density on
the parameters will be rather slow.




Feynman, 1972

(A possible) solution:
Variational Inference™

Recipe:

* Given observations 0 = {o(t;), ..., 0(t,)},

and generative model p(o,8,s) = p(0|8,s)p(8, s), where s = {s(t;), ..., s(t,)}
Introduce approximation g, (6, s) to posterior density p(60,s|o), parameterized
by sufficient statistics u = {Ug, Us(t,)r - » Ks(t,)}-

Always = 0, equal to 0 if and only
Converts a complex integration to an if both distributions are equal. (But
optimization problem. not symmetrical!)

: ~

* Minimize the variational free energy
F(o,1) = —Inp(0) + Dt (4,.(6,5)| | p(8,50))

* This will maximize the evidence p(0) for the agent’s model of the world, while
simultaneously driving q,,(0, s) towards the true posterior p(8, s|o).

*Disclaimer: Will be combined with Monte-Carlo Sampling next week! ©



Short interrupt: KL-Divergence

. q,(0,s)
p(6,s|o)

Die. (4.(6,5)11 p(8,5l0)) = <1 >
Q[,L(Q'S)

)

Expectation with respect to q,(6, s)

It’s really easy to evaluate for Gaussians:

N(x; pq,01)
D1 (N (x; pyq, N(x; s, = {l
KL( (x; (1, 01) | IN(x; sy 02)) nN(x; PES
N(x;11,01)
—n 2+ of+(p1—p2)* 1
01 20'22 2



What have we won?

To minimize, we have to evaluate the variational Free Energy
F(o,1) = ~Inp(0) + Dyt (46,911 p(6,10))

| ! T

ey
Y

This is just the

How hard 7 ¥ {03) y «<—— posterior, that we
to evaluate: &) want to approximate!
can be rewritten as “Complexity”

F(o,u) =< —Inp(0l6,5) >4 0, +DPx.(q.(6,5) 11 p(8,5))
! f !

How hard 0o ¢
to evaluate: (o0 Accuracy £, 3) “n

S

or (for Physicists):
F(o,u) =< —1Inp(o,8,s) >q,0,5)—< —In q,(0,s) > 4,(6,5)

How hard

to evaluate: @' Expected Energy /.3) Entropy

*illustration of variational inference with emojis from: http://www.inference.vc/choice-of-recognition-models-in-vaes-a-regularisation-view/



Predictive Coding

Assume simplest way of minimizing F possible:
Gradient Descent

The sufficient statistics ug and u; change to minimize the Free
Energy F(ug, us, 0) via:

Ho < =V, F(ug, us, 0)
Us X _VMSF(.UQJ Hs) 0)
The dynamics of the sufficient statistics pg of the approximate

posterior density over parameters 0 of the generative model
are very slow:

> Ug can be represented in terms of synaptic connectivity.

The dynamics of the sufficient statistics p; of the approximate
posterior density over hidden states s are fast:
> U can be represented in terms of neural activity.



Predictive Coding:

Additional assumptions about Predictive Coding
the structure and

implementation of the states Recurrent neural
s(t): dynamics at
o each level can
* Probabilities represented by implement
Gau.ss!ans, where sufficient Jttractor
statistics ug(t) and ug networks
?
repre.?ent mean§ and winner-take-all
covariance matrices. networks
. . 7
!‘n\:zr;si.:i;zxarlance matrix = winnerless
P _ competition,... Primary Sensory Cortex
* Hierarchical temporal

structure of states s(t).

c.f. Friston,
Phil. Trans. R. Soc. B, 2005



Reality check
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Predictive Coding Summary

Our brain uses a variational approximation to
invert and optimize a generative model of its
sensations.

The model corresponds to the world, i.e. it is
nonlinear, dynamic and hierarchically structured.

The posterior on states is represented by means of
neural activity, the posterior on parameters is
represented by means of synaptic connectivity.

Using simple assumptions about the hierarchical
form, the distributions (Gaussians) and the
optimization (Gradient Descent), the resulting
predictive coding scheme matches cortical
hierarchies, behavioral data, and
neurophysiological responses, such as repetition
suppression, omission responses, and mismatch
negativity.

From concepts the sensations

. .

e _ Interoception
“A bird in song”\
‘A,;\
e N 4
' 1 4 u

- 7 __-proprioception

o

)

o
s

Bastos et al., Canonical Microcircuits for
Predictive Coding, Neuron, 2012



Active Inference: Predictive
Coding with Reflex Arcs

From reflexes to action

dorsal horn

\J)

ventral root

& =IL(5(a)—g(@))

i

i Corresponds nicely to the architecture
g() “\ of our motor system.

dorsal root

ventral horn

Friston, Daunizeau, Kilner, Kiebel, Action and
behavior: a free-energy formulation, Biol.
Cybernetics, 2011




How to formulate this?

Remember the following form of the variational Free Energy:
F(o,1) =< —Inp(0l6,s) >4,(6,) +Px1(q. (6,911 p(6,5))
! ! !

How hard
/\‘\ “« ” YL
to evaluate: go o) Accuracy /o b} " p
I “Complexity”

The accuracy term depends on
observations, which in turn depend on the
current, true state of the world, which again
depends on the agent’s actions.

T

By choosing actions a(t), in terms of the states of
output organs (muscles, mainly...), to minimize
variational Free Energy, the agent will seek out
sensations, that are likely under its generative model of
the world and its current beliefs about the state of the
world.



Summary: Active Inference

The sufficient statistics

* Uy of the parameters of the generative model
* U of the hidden states of the world

* u, of the states of the agent’s effector organs

all change to minimize the variational Free Energy F

(1o, s, ta) = argmin F(o(ua), g, is)
Hg»ﬂs:ﬂa

Where

F(o,u) =< —Inp(0l6,s) >qu(9,s) +DKL(QM(0» s p(Q,S))




Some preliminary thoughts...

* Right now Active Inference gives an abstract
account of the hierarchical architecture of the
cortex, the basic architecture of the motor system,
perceptual phenomena, and macroscopic neural
responses.

* But we used a looooooong list of assumptions and
seemingly counter-intuitive arguments, i.e.

Does this view of action not implicate, that | should
retire to a dark room and turn off the light? | would be
able to exactly predict my sensory input and all would

be fine. Well, ...

at some point, you would
get thirsty.




Evolutionary Argument

* In order to survive, an agent has to keep certain inner parameters within very
strict bounds.

* Thus, it has to constrain the entropy of the probability distributions over these
parameters.

* But entropy is just:
H(S) =< —Inp(s) >0(s)

* Assuming we have sensory systems, that give us access to the relevant
parameters (glomus caroticus, osmoreceptors in the hypothalamus, macula
densa, ...) this can be upper bounded by:

H(S) < H(O) + const.

Ergod|C|ty

e Where

The agent can keep its physiological variables within viable bounds by
minimizing sensory surprise at all times (Euler-Lagrange-Equation).




Closing the circle...

Variational Free Energy is just: > 0

F(o,u) =+ Dk, (%(9; S| P(9;5|0))
|

!
How hard |
to evaluate: @ @

* By minimizing Free Energy using action, an agent upper bounds its sensory surprise.

* Thereby, it can counteract dispersive effects of the environment, to sustain its
physiological variables (e.g. its inner milieu) within viable bounds.

* |So the Bayes-optimal learning and perception that we started with is only a by-product,
required to make the Free Energy, which can be evaluated and influenced by the
agent, a tight bound on sensory surprise, to allow for an agent’s survival.




Closing the circle... “Goals” or “Utiity” i

terms of prior
expectations on states to
> 0 bein, p(0,s). States to be

highly frequented are
F(o,u) =+ Dk, (qu 8,s)]|| p(6, S|0)) associated with “high
reward”. 2 Next Week

=< —Inp(0|0,s) >qﬂ(9,s) -I'DKL(qH(H» s p(H,S))

Variational Free Energy is just:

=< —Inp(o,0,s) >qu0,5~<—1In qu(6,5) > qu(0,5)

=< —1Inp(0|6,s)p(8,5)>¢,0.9—< —Inqu(6,5) >4, (6.5)

Maximize of
variational density 2
Keeping your options
open, Novelty Seeking,
Curiosity



Some First Evidence

Preferences

Outcome probabilities
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Schwartenbeck et. al, Evidence for surprise minimization over value maximization in choice
behavior, Scientific Reports, 2015



