4 Deep Generative Models

BVM 2018 Tutorial: Advanced Deep Learning Methods

Jens Petersen

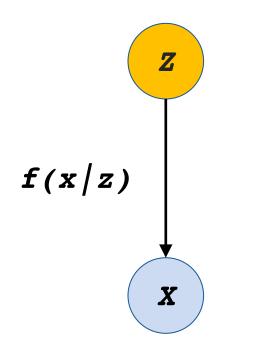
Dept. of Neuroradiology, Heidelberg University Hospital Div. of Medical Image Computing, DKFZ Heidelberg Faculty of Physics & Astronomy, Heidelberg University

Data Shortage

Transfer learning

Noisy labels and data

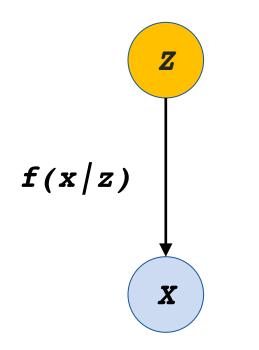
Basic Principle of Generative Models



Assumption

Observations \boldsymbol{x} generated from latent variables \boldsymbol{z} via mapping \boldsymbol{f}

Basic Principle of Generative Models



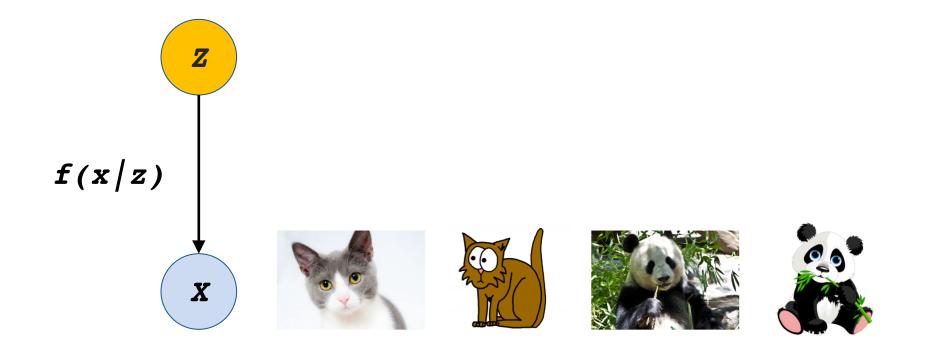
Assumption

Observations \boldsymbol{x} generated from latent variables \boldsymbol{z} via mapping \boldsymbol{f}

Goal

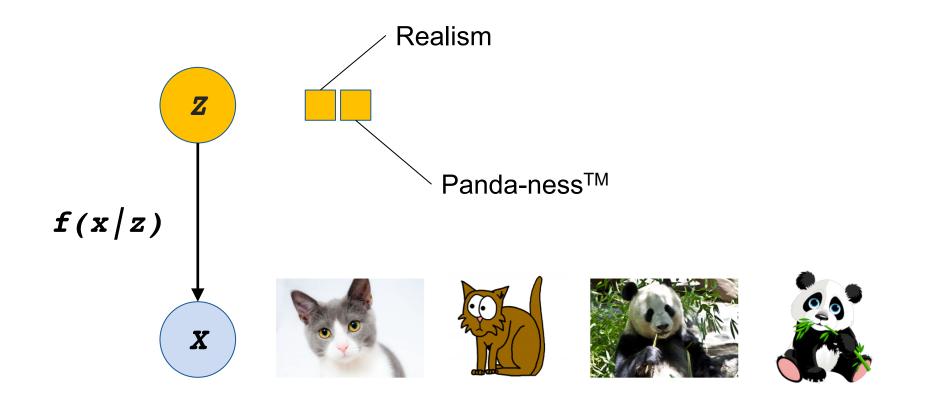
- Be able to generate more samples that follow distribution of *x*
- *z* interpretable in some way

Basic Principle of Deep Generative Models



[pexels.com, pixabay.com, pngimg.com]

Basic Principle of Deep Generative Models



[pexels.com, pixabay.com, pngimg.com]

6

Generative Adversarial Networks

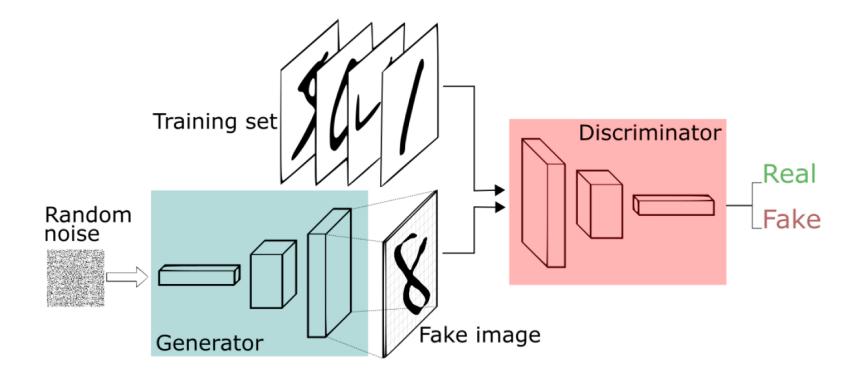
8

[https://twitter.com/goodfellow_ian]

dkfz.

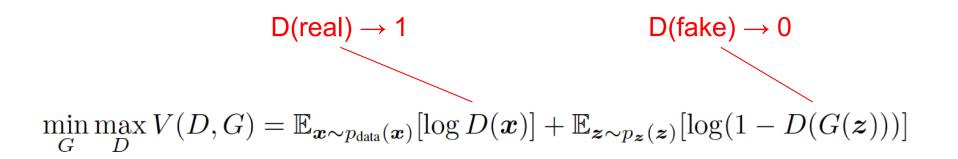
9

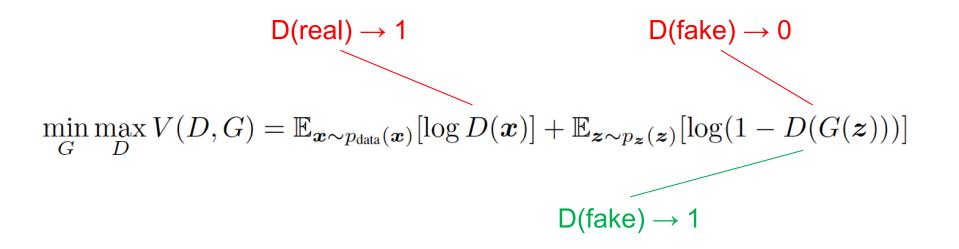
Basic GAN Layout

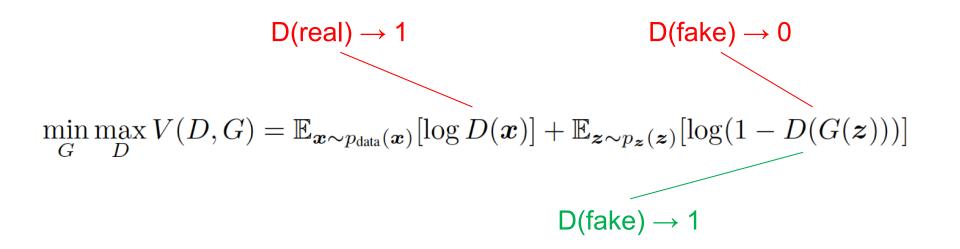


[https://deeplearning4j.org/generative-adversarial-network] [1] *Generative Adversarial Networks*, Goodfellow et al., 2014, NIPS

$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log(1 - D(G(\boldsymbol{z})))]$







- Trying to find saddle point
 - \rightarrow Very hard to optimize
- Lot of work on different objectives and "tricks" for training

[2] Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks Radford et al., 2015, arXiv:1511.06434
[3] Are GANs Created Equal? A Large Scale Study, Lucic et al., 2017, arXiv:1711.10337

Original Examples

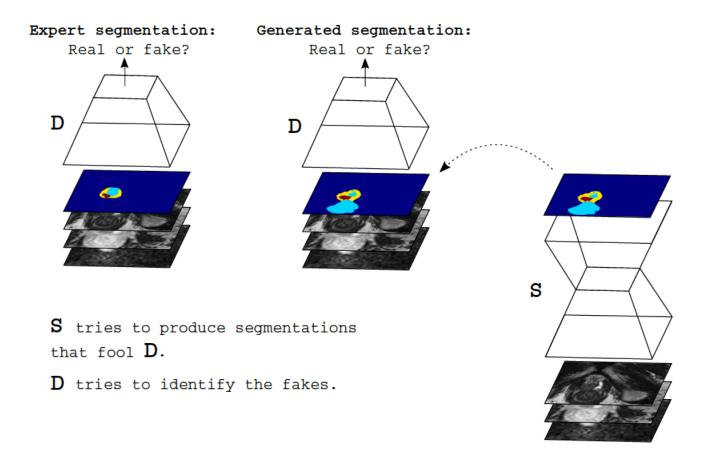
c)

General case

Generative models make no default assumptions for p(z)

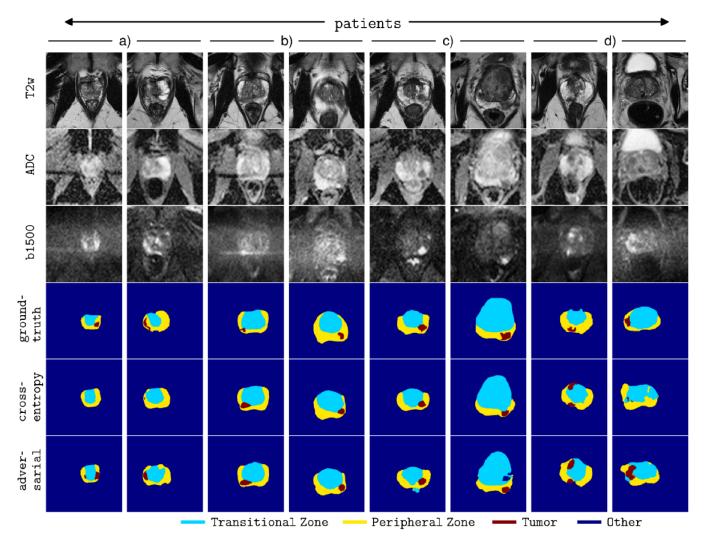
 \rightarrow Could be random noise and/or real data

Important Concepts Conditional GAN



[4] Adversarial Networks for the Detection of Aggressive Prostate Cancer, Kohl et al., 2017, NIPS Workshop

Important Concepts Conditional GAN



[4] Adversarial Networks for the Detection of Aggressive Prostate Cancer, Kohl et al., 2017, NIPS Workshop

Assumption

Have two unpaired sets A,B of images with some setspecific characteristic (e.g. photos & paintings)

Goal

Be able to transform image so it looks like images in different set

Assumption

Have two unpaired sets A,B of images with some setspecific characteristic (e.g. photos & paintings)

Goal

Be able to transform image so it looks like images in different set

Naive Approach

GANs that take images from A(B) and create images that similar to others from B(A)

Assumption

Have two unpaired sets A,B of images with some setspecific characteristic (e.g. photos & paintings)

Goal

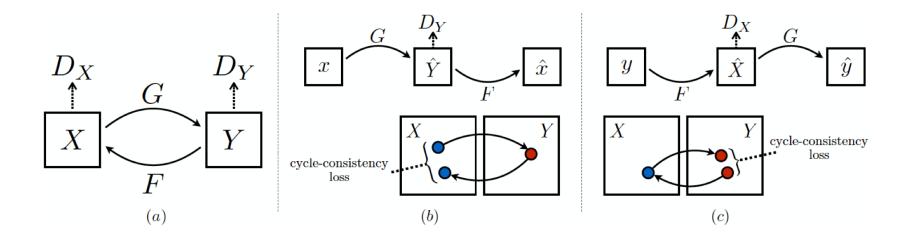
Be able to transform image so it looks like images in different set

Naive Approach

GANs that take images from A(B) and create images that similar to others from B(A)

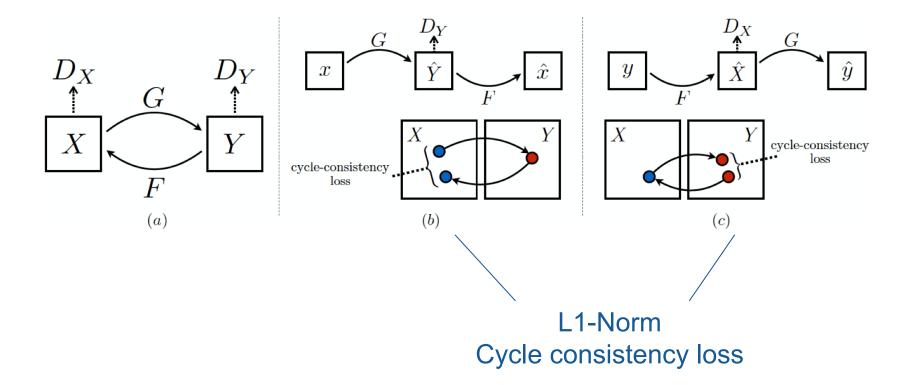
 \rightarrow no guarantee that output looks similar to input

Important Concepts CycleGAN



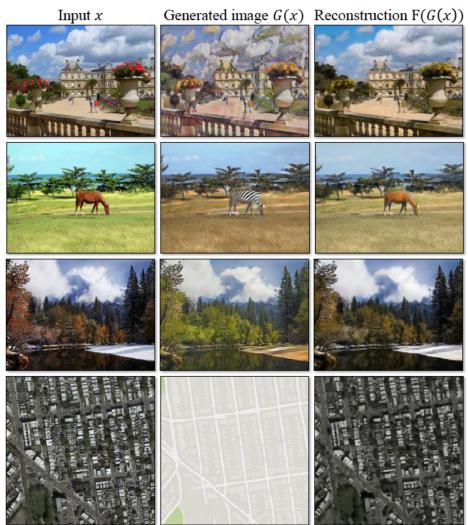
[5] *Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks*, Zhu et al., 2017, arXiv:1703.10593

Important Concepts CycleGAN



[5] *Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks*, Zhu et al., 2017, arXiv:1703.10593

Important Concepts CycleGAN



[5] Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks, Zhu et al., 2017, arXiv:1703.10593

Examples Progressive Growing

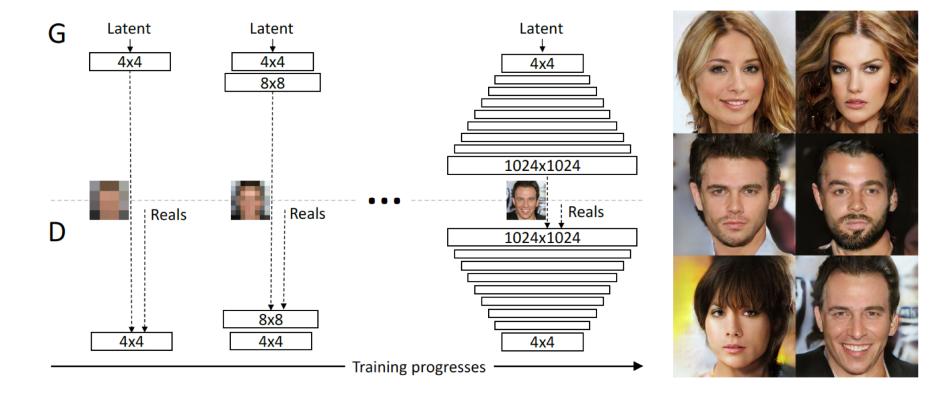
dkfz.

26

PROGRESSIVE GROWING OF GANS FOR IMPROVED QUALITY, STABILITY, AND VARIATION

Tero KarrasTimo AilaSamuli LaineJaakko LehtinenNVIDIANVIDIANVIDIANVIDIA and Aalto University{tkarras,taila,slaine,jlehtinen}@nvidia.com

Examples Progressive Growing



Examples Progressive Growing

Samples

Nearest Neighbours

Image Similarity

- Pixel similarity
 - mean squared error (= L2 norm)
 - other norms

Image Similarity

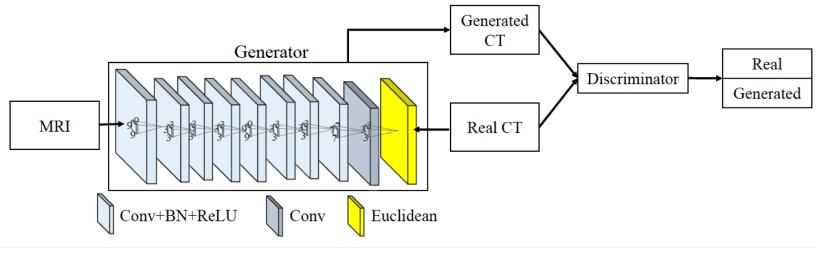
- Pixel similarity
 - mean squared error (= L2 norm)
 - other norms
- Semantic similarity
 - Inception score (score for entire model)
 - Combined distance of multiple feature layers in discriminator
 - Human evaluation (e.g. Mechanical Turk)

Medical Image Synthesis with Context-Aware Generative Adversarial Networks

Dong Nie^{1*}, Roger Trullo^{2*}, Caroline Petitjean², Su Ruan², and Dinggang Shen^{1**}

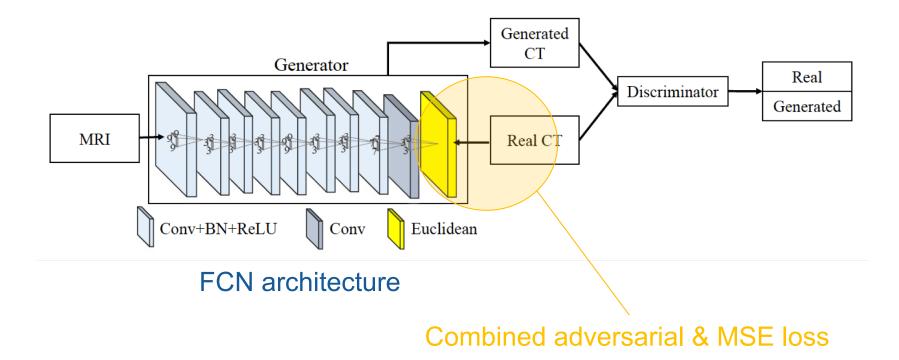
¹ University of North Carolina at Chapel Hill, USA
 ² Normandie Univ, UNIROUEN, UNIHAVRE, INSA Rouen, LITIS, 76000 Rouen, France

Examples MRI to CT Image Synthesis

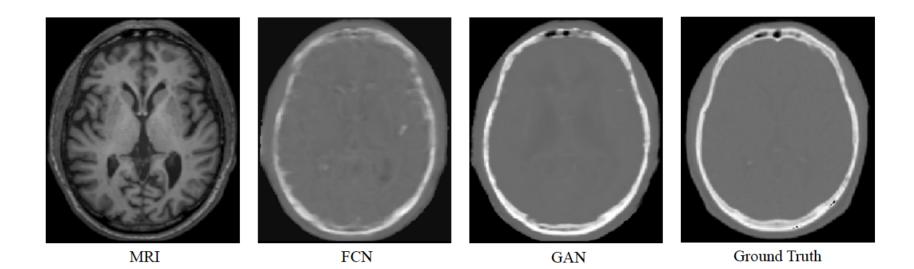


FCN architecture

Examples MRI to CT Image Synthesis



Examples MRI to CT Image Synthesis



Unsupervised domain adaptation in brain lesion segmentation with adversarial networks

Konstantinos Kamnitsas^{1,4*}, Christian Baumgartner¹, Christian Ledig¹, Virginia Newcombe^{2,3}, Joanna Simpson², Andrew Kane², David Menon^{2,3}, Aditya Nori⁴, Antonio Criminisi⁴, Daniel Rueckert¹, and Ben Glocker¹

¹ Biomedical Image Analysis Group, Imperial College London, UK
 ² Division of Anaesthesia, Department of Medicine, Cambridge University, UK
 ³ Wolfson Brain Imaging Centre, Cambridge University, UK
 ⁴ Microsoft Research Cambridge, UK

Examples Domain Transfer for Lesion Segmentation 36

Assumption

(X, Y) in source domain, (X*) in target domain

Assumption

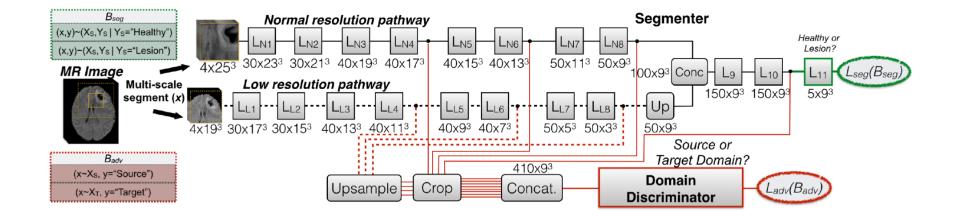
(X, Y) in source domain, (X*) in target domain

- ... + GE + Lesion Segmentation in source
- ... + SWI in target

Goal

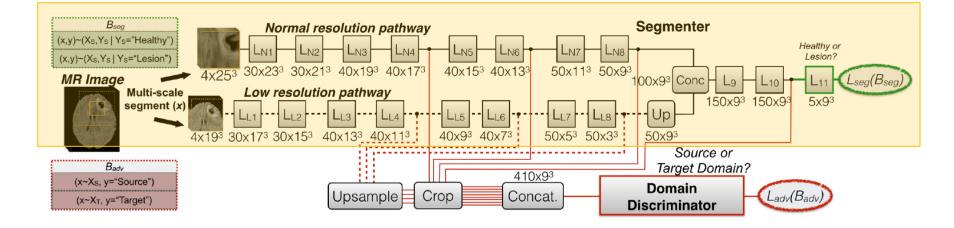
Segmentation in target domain

11.3.2018 I Deep Generative Models I Jens Petersen, Div. of Medical Image Computing



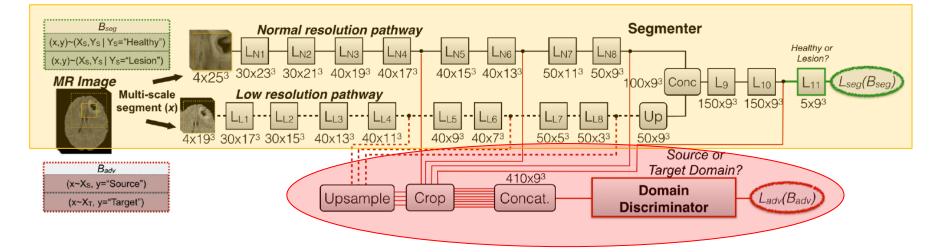
11.3.2018 I Deep Generative Models I Jens Petersen, Div. of Medical Image Computing

DeepMedic architecture



dkfz.

DeepMedic architecture



Auxiliary adversarial loss ensures domain invariant feature maps

	DSC
Train on S Train on S (No GE/SWI)	$15.7(13.5) \\ 59.7(22.1)$
Train on S \rightarrow UDA to T (ours)	62.7(19.8)
Train on T Train on S+T Train on S+T (GE/SWI diff chan.)	$63.5(20.2) \\ 66.5(17.7) \\ 64.7(19.2)$

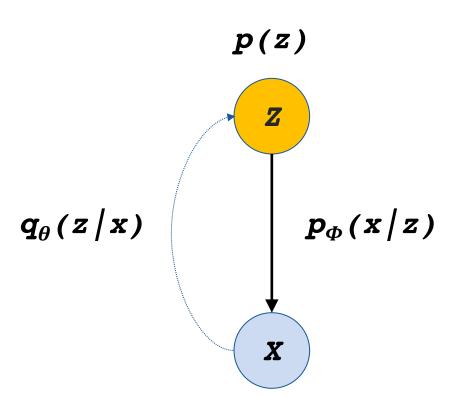
Higher is better

11.3.2018 | Deep Generative Models | Jens Petersen, Div. of Medical Image Computing

- High-quality, high-resolution outputs possible
 Adversarial training extremely versatile
- Difficult to train
- ✗ No inference (latent representation from data)

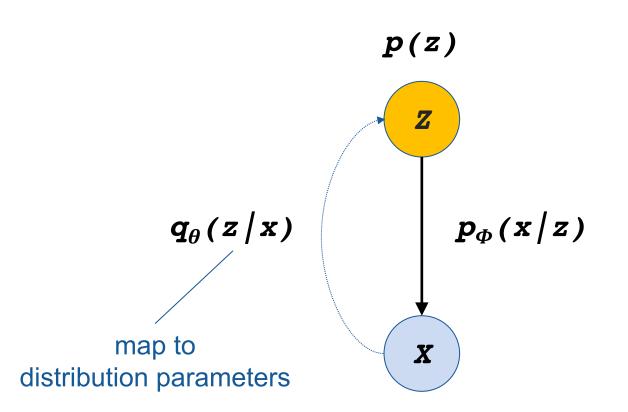
Variational Autoencoders

Probabilistic Perspective



[6] Auto-encoding variational Bayes, Kingma & Welling, 2014, ICLR
[7] Stochastic backpropagation and approximate inference in deep generative models, Rezende et al., 2014, ICML

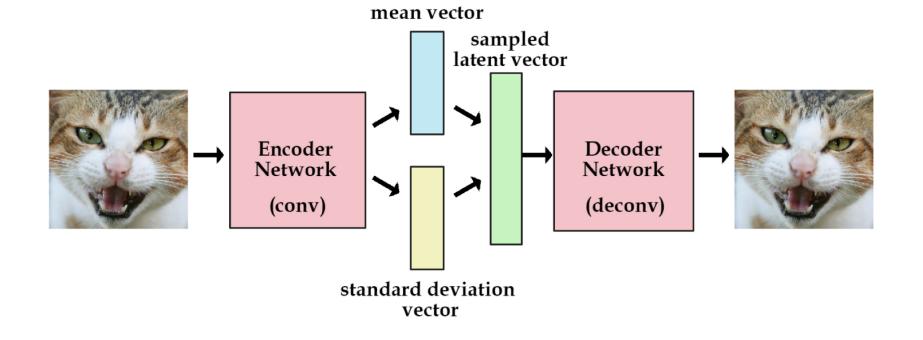
Probabilistic Perspective



[6] Auto-encoding variational Bayes, Kingma & Welling, 2014, ICLR

[7] Stochastic backpropagation and approximate inference in deep generative models, Rezende et al., 2014, ICML

It looks like an autoencoder



[http://kvfrans.com/variational-autoencoders-explained/]

Reparametrization Trick

$$z \sim \mathcal{F}(z; \theta)$$
 $y = f(z)$ \longrightarrow $\frac{\partial y}{\partial \theta} = \frac{\partial f}{\partial z} \frac{\partial z}{\partial \theta}$

Reparametrization Trick

$$z \sim \mathcal{F}(z;\theta) \qquad y = f(z) \qquad \longrightarrow \qquad \frac{\partial y}{\partial \theta} = \frac{\partial f}{\partial z} \frac{\partial z}{\partial \theta}$$
$$z = g(\theta;\varepsilon) \qquad \varepsilon \sim \mathcal{F}^*(\varepsilon;\theta^*) \qquad \longrightarrow \qquad \frac{\partial y}{\partial \theta} = \frac{\partial f}{\partial g} \frac{\partial g}{\partial \theta}$$

11.3.2018 | Deep Generative Models | Jens Petersen, Div. of Medical Image Computing

Reparametrization Trick

$$z \sim \mathcal{F}(z;\theta) \qquad y = f(z) \longrightarrow \frac{\partial y}{\partial \theta} = \frac{\partial f}{\partial z} \frac{\partial z}{\partial \theta}$$
$$z = g(\theta;\varepsilon) \qquad \varepsilon \sim \mathcal{F}^*(\varepsilon;\theta^*) \longrightarrow \frac{\partial y}{\partial \theta} = \frac{\partial f}{\partial g} \frac{\partial g}{\partial \theta}$$
$$z \sim N(z;\mu,\sigma) \longrightarrow z = \mu + \sigma * \varepsilon \quad \varepsilon \sim N(\varepsilon;0,1)$$

VAE Learning Objective

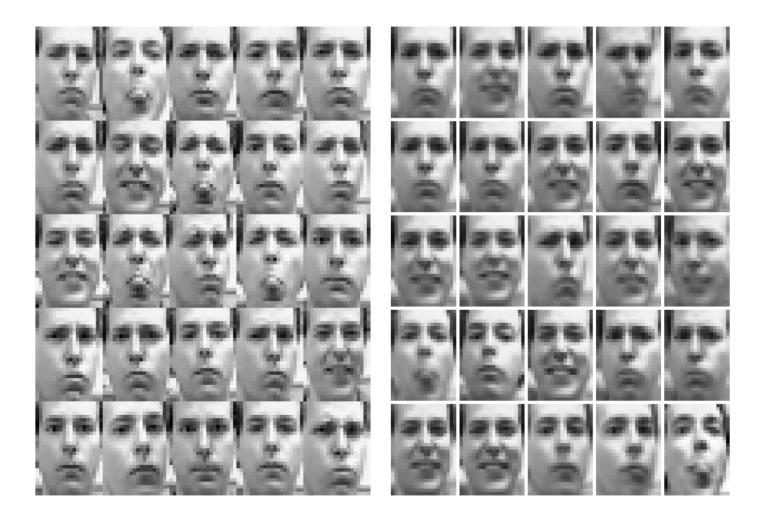
$l_i(heta,\phi) = -E_{z\sim q_ heta(z|x_i)}[\log p_\phi(x_i|z)] + KL(q_ heta(z|x_i)||p(z))$

VAE Learning Objective

Maximize reconstruction fidelity (e.g. MSE) $l_i(heta, \phi) = -E_{z \sim q_{ heta}(z|x_i)}[\log p_{\phi}(x_i|z)] + KL(q_{ heta}(z|x_i)||p(z))$ Make encodings conform to prior

11.3.2018 I Deep Generative Models I Jens Petersen, Div. of Medical Image Computing

Original Examples



Learning Structured Output Representation using Deep Conditional Generative Models

Kihyuk Sohn^{*†} Xinchen Yan[†] Honglak Lee[†] * NEC Laboratories America, Inc. [†] University of Michigan, Ann Arbor ksohn@nec-labs.com, {xcyan, honglak}@umich.edu

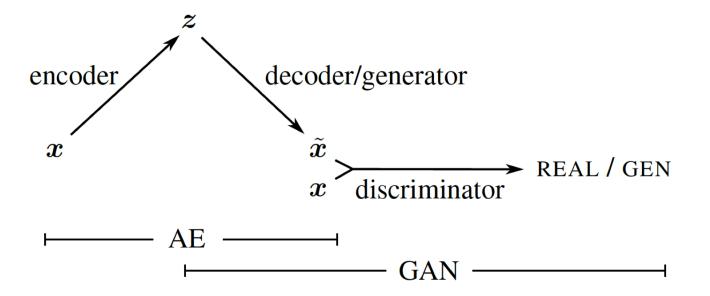
11.3.2018 I Deep Generative Models I Jens Petersen, Div. of Medical Image Computing

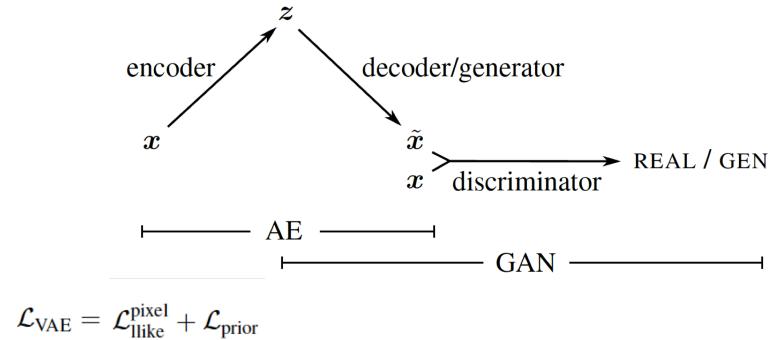
Example Corrupted Data

55

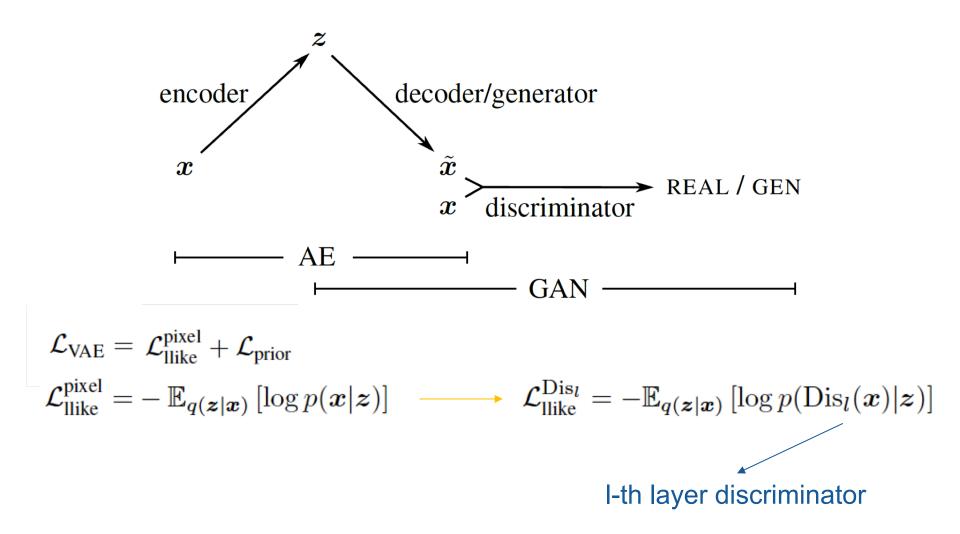
Autoencoding beyond pixels using a learned similarity metric

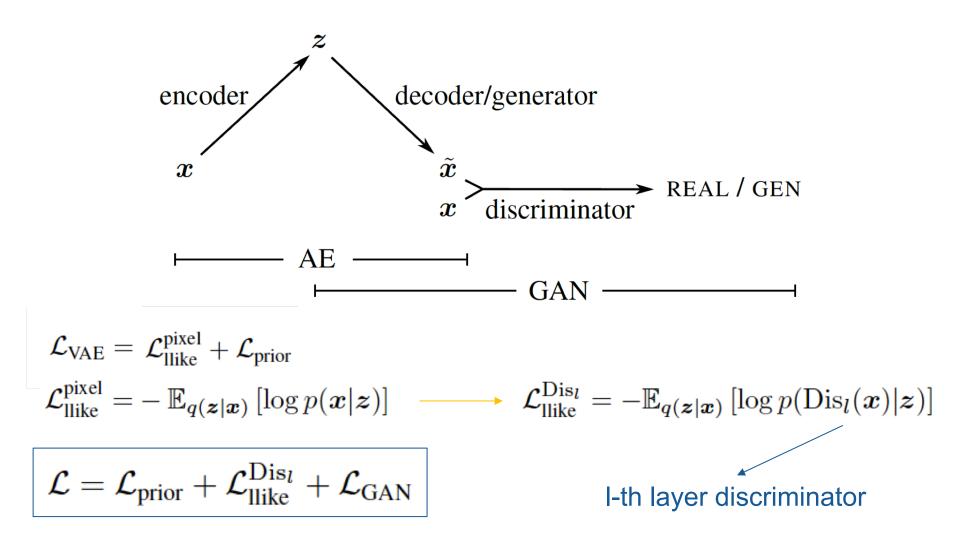
Anders Boesen Lindbo Larsen ¹	ABLL@DTU.DK
Søren Kaae Sønderby ²	SKAAESONDERBY@GMAIL.COM
Hugo Larochelle ³	HLAROCHELLE@TWITTER.COM
Ole Winther ^{1,2}	OLWI@DTU.DK
¹ Department for Applied Mathematics and Computer Science, Technical University of Denmark	
² Bioinformatics Centre, Department of Biology, University of Copenhagen, Denmark	
³ Twitter, Cambridge, MA, USA	





11.3.2018 I Deep Generative Models I Jens Petersen, Div. of Medical Image Computing





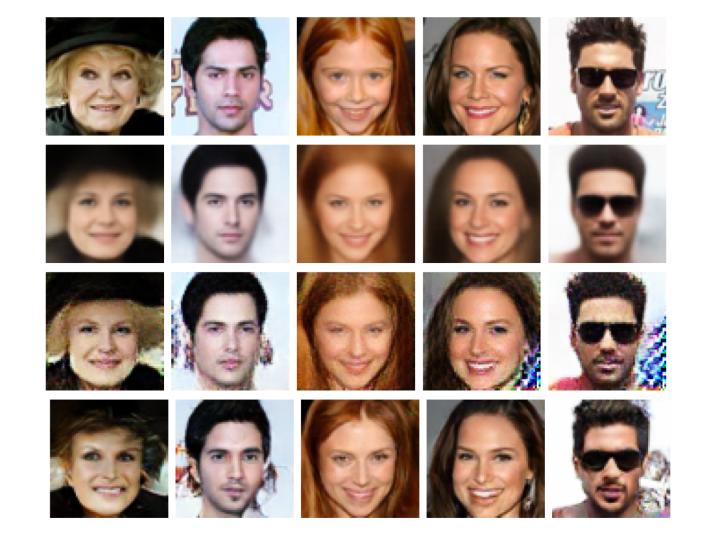
59

Input

VAE

 VAE_{Dis_l}

VAE/GAN



dkfz.

11.3.2018 I Deep Generative Models I Jens Petersen, Div. of Medical Image Computing

dkfz.

Notes on VAEs

- GANs designed to generate new data
- VAEs designed to find interpretable latent representation

Notes on VAEs

- GANs designed to generate new data
- VAEs designed to find interpretable latent representation
 - can go from data to latent representation
 - good for uncertainty estimation
 - latent representation tends to focus on most important features

Notes on VAEs

- GANs designed to generate new data
- VAEs designed to find interpretable latent representation
 - can go from data to latent representation
 - good for uncertainty estimation
 - latent representation tends to focus on most important features
- Hard to produce high quality outputs
 - Need better image similarity measure than MSE
 - Combination with GANs promising

Further Reading

- Literature overview GANs
 https://github.com/nightrome/really-awesome-gan
- Literature overview GANs for MIC https://github.com/xinario/awesome-gan-for-medical-imaging
- VAE Tutorial (Doersch) https://arxiv.org/abs/1606.05908
- PyTorch DCGAN https://github.com/pytorch/examples/tree/master/dcgan
- PyTorch VAE
 https://github.com/pytorch/examples/tree/master/vae
- Improving VAE outputs (Autoregressive flow) https://arxiv.org/abs/1606.04934 (Normalizing flows) https://arxiv.org/abs/1505.05770
- Combining GANs and VAEs (Adversarial Autoencoder) https://arxiv.org/abs/1511.05644 (Variational GAN) https://arxiv.org/abs/1706.04987
- Related generative models

 (NICE) https://arxiv.org/abs/1410.8516
 (Real NVP) https://arxiv.org/abs/1605.08803

