1 Image Classification

BVM 2018 Tutorial: Advanced Deep Learning Methods

Jakob Wasserthal, Division of Medical Image Computing

Classification of skin cancer

VS

Esteva et al., Dermatologist-level classification of skin cancer with deep neural networks, Nature, 2017

Classification of skin cancer

benign

•

VS

malignant

Esteva et al., Dermatologist-level classification of skin cancer with deep neural networks, Nature, 2017

Classification

ILSVRC challenge / ImageNet

ILSVRC challenge / ImageNet

VGG

image output 3x3 conv, 64 size: 224 3x3 conv, 64 pool, /2 output size: 112 3x3 conv, 128 3x3 conv, 128 pool, /2 output size: 56 3x3 conv, 256 3x3 conv, 256 3x3 conv, 256 3x3 conv, 256 ᡟ pool, /2 output size: 28 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 ♦ output pool, /2 size: 14 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 ᡟ output pool, /2 size: 7 output fc 4096 size: 1 ¥ fc 4096 ¥ fc 1000

VGG-19

- simple structure
- 160M parameters

Simonyan et al., Very deep convolutional networks for large-scale image recognition, arXiv, 2014

He et al., Deep Residual Learning for Image Recognition, arXiv, 2015

ILSVRC challenge / ImageNet

GoogLeNet

(a) Inception module, naïve version

[Width x Height x Nr of Filters]

GoogLeNet

(a) Inception module, naïve version

[Width x Height x Nr of Filters]

GoogLeNet

(b) Inception module with dimensionality reduction

Szegedy et al., 2014

GoogLeNet

- 4M parameters (VGG: 160M)
- 22 trained layers

Szegedy et al., Going Deeper with Convolutions, arXiv, 2014

dkfz.

Parameters:

5x5-convolution: 5*5=25

- 2* 3x3-convolution: 2* (3*3)=18
- => ~30% less parameters and computations

Parameters:

3x3-convolution: 3*3=9

- 2* 1x3-convolution: 2* (1*3)=6
- => ~33% less parameters and computations

3x more computations

Representational bottleneck

Optimised Inception module

Inception v3

- 3.5% top-5 error
- 42 Layers
- 2.5x number of parameters of GoogLeNet

ILSVRC challenge / ImageNet

Classification of skin cancer

- Inception v3 pretained on ImageNet
- Dermatologist-level accuracy

Esteva et al., Dermatologist-level classification of skin cancer with deep neural networks, Nature, 2017

Classification of diabetic retinopathy

- Inception v3 pretained on ImageNet
- Expert-level accuracy

Gulshan et al., Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs, JAMA, 2016

ILSVRC challenge / ImageNet

He et al., Deep Residual Learning for Image Recognition, arXiv, 2015

$$\mathbf{y} = \mathcal{F}(\mathbf{x}, \{W_i\}) + \mathbf{x}.$$

He et al., Deep Residual Learning for Image Recognition, arXiv, 2015

$$\mathbf{y} = \mathcal{F}(\mathbf{x}, \{W_i\}) + \mathbf{x}.$$

- 152 Layers

	VGG-19	34-layer plain	34-layer residual
	image	image	image
output size: 224	3x3 conv, 64		
	¥ 3x3 conv, 64		
	pool. /2		
output size: 112	¥ 2×2 conv. 128		
	5x5 coliv, 128		
	3x3 conv, 128	7x7 conv, 64, /2	7x7 conv, 64, /2
output	pool, /2	pool, /2	pool, /2
size: 56	3x3 conv, 256	3x3 conv, 64	3x3 conv, 64
	3x3 conv, 256	3x3 conv, 64	3x3 conv, 64
	3x3 conv, 256	3x3 conv, 64	3x3 conv, 64
	¥ 3x3 conv, 256	▼ 3x3 conv, 64	3x3 conv, 64
		3x3 conv, 64	3x3 conv, 64
		3x3 conv. 64	3x3 conv. 64
		₹ ₹ 2x2 copy 128 /2	3x2 conv 128 /2
output size: 28	↓ ↓	× 100	5x5 coliv, 128, /2
	3x3 conv, 512	3x3 conv, 128	3x3 conv, 128
	3x3 conv, 512	3x3 conv, 128	3x3 conv, 128
	3x3 conv, 512	3x3 conv, 128	3x3 conv, 128
	3x3 conv, 512	3x3 conv, 128	3x3 conv, 128
		3x3 conv, 128	3x3 conv, 128
		3x3 conv, 128	3x3 conv, 128
		3x3 conv, 128	3x3 conv, 128
output	↓ pool, /2	3x3 conv, 256, /2	3x3 conv, 256, /2
size: 14	3x3 conv. 512	3x3 conv. 256	3x3 conv. 256
	2x2 conv. 512	2x2 conv 256	2v2 conv 256
	5x5 coliv, 512	SXS CONV, 256	→ → →
	3x3 conv, 512	3x3 conv, 256	3x3 conv, 256
	3x3 conv, 512	3x3 conv, 256	3x3 conv, 256
		3x3 conv, 256	3x3 conv, 256
		3x3 conv, 256	3x3 conv, 256
		3x3 conv, 256	3x3 conv, 256
		3x3 conv, 256	3x3 conv, 256
		3x3 conv, 256	3x3 conv, 256
		★ 3x3 conv, 256	3x3 conv, 256
		3x3 conv, 256	3x3 conv, 256
output	pool. /2	3x3 conv. 512, /2	3x3 copy, 512, /2
size: 7	1	¥	3x3 conv 512
		→ 5x5 conv, 512	5,5 (010, 512
		3x3 conv, 512	3x3 conv, 512
		3x3 conv, 512	3x3 conv, 512
		3x3 conv, 512	3x3 conv, 512
	Ļ	3x3 conv, 512	3x3 conv, 512
output size: 1	fc 4096	avg pool	avg pool
	fc 4096	fc 1000	fc 1000
	fc 1000		

He et al., Deep Residual Learning for Image Recognition, arXiv, 2015

ILSVRC challenge / ImageNet

DenseNet

Huang et al., Densely Connected Convolutional Networks, CVPR, 2017

DenseNet

Huang et al., Densely Connected Convolutional Networks, CVPR, 2017

Challenges in medical image classification

- few training data
- no RGB images
- small lesions
- big images
- interpretability

A deep neural network is often considered as a "black box".

Interpretability of predictions

"What parts of the input image affect the decision?"

Gulshan et al., Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs, 2016

Recap: Training via Backpropagation

Saliency maps

"What parts of the input image affect the decision?"

"backprop into image":

 $\frac{dp_{dog}(x)}{dx_{ij}}$

Slides by courtesy of Paul Jäger

 x_{ij}

 $\frac{dp_{dog}(x)}{dx_{ij}}$

Slides by courtesy of Paul Jäger

Interpretability of predictions

Jamaludin et al., SpineNet: Automated classification and evidence visualization in spinal MRIs, Medical image analysis, 2017

Questions

Advanced: Saliency via Perturbation

"Interpretable Explanations of Black Boxes by Meaningful Perturbation" Ruth et al., arXiv, 2018

flute: 0.9973

Learned Mask

Trick: Backprop into a mask **m** multiplied with the image to be the "minimal destroying region".

$$\frac{d[w*(x*m)]}{dm} = w*x$$

Saliency via Perturbation

object: find the smallest destroying region.

$$\boldsymbol{c}^* = \frac{\lambda_1 \|\boldsymbol{m}\|}{\boldsymbol{\mu}} + p_{dog}(\phi(\boldsymbol{x};\boldsymbol{m})) + \lambda_2 T V(\boldsymbol{m})$$

Saliency via Perturbation

maypole: 0.0000

Learned Mask

Avoid high frequency artefacts by enforcing a smooth structure:

$$c^* = \lambda_1 \| 1 - m \| + p_{dog}(\phi(x;m)) + \frac{\lambda_2 TV(m)}{\lambda_2 TV(m)}$$

Saliency via Perturbation

Why can CNNs be fooled so easily?

(source: Fei-Fei Li & Justin Johnson & Serena Young, cs231n 2017, Lecture 12)

- Trake wrong class probability as cost function
- Backprop into image -> Gradients for optimal "fooling"
- Optimization on image pixels

Why can CNNs be fooled so easily?

"Primary cause of NN's vulnerability to adversarial perturbations is their [piecewise] linear nature"

(Explaining and Harnessing Adversarial Examples, Goodfellow et al., 2015)

Sigmoid

